博碩士論文 111554010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:95 、訪客IP:18.119.122.145
姓名 賴霈洲(Pei-Jhou Lai)  查詢紙本館藏   畢業系所 網路學習科技研究所
論文名稱 結合生成式人工智慧之探究式學習同伴系統以增進研究生資料視覺化素養能力
(Enhancing Graduate Students′ Data Visualization Literacy through an Inquiry-Based Learning Companion System Integrated with Generative AI)
相關論文
★ 基於間隔效應與知識追蹤之適性化學習演算法系統設計與應用:以多益英語學習為例★ 結合社會調節學習平台與教中學課程設計以增進大學生視覺化資料分析能力與調節學習
★ 以深度知識追蹤模型應用於程式學習系統★ 結合聊天機器人與推薦系統之閱讀學伴應用於國小閱讀
★ 視覺化閱讀歷程系統於國小身教式持續安靜閱讀之應用★ 基於文本型程式編寫紀錄之自我調節儀表板於程式設計學習成效探究
★ 結合重新設計之翻轉教室模型與視覺化分析系統對於程式設計學習之影響★ 結合視覺化儀表板與合作腳本輔助VR共創活動以探討國小學童之學習行為、情感與認知參與
★ 結合視覺化儀表板之專案管理平台於在職學生專案能力與資料分析學習之影響★ 專題導向學習與調節學習儀表板應用於資料視覺化在職課程
★ 整合預測分析與學習儀表板以提升準時畢業率: 以印尼高等教育為例★ 結合生成式人工智慧與4F動態回顧循環理論於國小閱讀學習同伴系統的應用與成效評估
★ 應用指數平滑法實現短期學習成效預測與學習歷程儀表板系統建置★ 應用生成式模型輔助問題生成學習系統於國小社會 課程之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-8-1以後開放)
摘要(中) 在當今資料爆發的時代中,學生的資料素養能力已成為對未來競爭力產生深遠影響的關鍵技能。學生能否利用手頭的資料回答問題,反映了他們的資料素養水準。透過視覺化技術,資料得以轉化為資訊,不僅更具傳達效果,同時也培養了學生根據背景敘事的能力。在學生處理資料時,常常會遇到迷茫困惑的情況。透過生成式人工智慧的輔助,讓其擔任老師、同儕、專家等角色,與學生一同進行學習與探究。這種探究式學習過程有助於學生建立堅實的資料素養基礎,讓他們能夠持續成長。
因此,本研究基於生成式人工智慧技術,開發智慧探究式學習同伴系統,旨在為學生在課程中進行聊天探究學習提供支援。該系統利用生成式人工智慧的技術建立了一個聊天機器人,使學生能夠與之互動提問,獲取知識和學習。同時,系統還提供討論區,讓同組同學可以查看和討論與聊天機器人的對話過程,從中提升與生成式人工智慧探究問題答案的能力。本研究將系統應用至學習環境中,針對臺灣北部某大學研究所之碩士班與在職專班學生共53位,展開為期16周的課程學習輔助,探討系統導入後學生資料素養、視覺化能力、學習動機之影響。
本研究結果顯示,通過生成式人工智慧開發的智慧探究式學習同伴系統能夠顯著提升學生的資料視覺化圖表理解能力。實驗組學生的資料視覺化圖表理解能力整體進步明顯優於控制組。學習同伴系統不僅能彌補現場教學資源的不足,還能克服地點和時間的限制,作為學生的學習夥伴,提供良好的互動態度,並即時解答問題或進行資料觀點的分析與討論。同時,系統還訓練學生在提問過程中的精準度,提升他們的提問技巧,使其能在資訊時代中迅速掌握問題的關鍵,並提出針對性的解決方案。
摘要(英) In the era of data explosion, students′ data literacy skills have become a key competence that significantly impacts their future competitiveness. The ability of students to use available data to answer questions reflects their level of data literacy. Through visualization techniques, data is transformed into information, enhancing communication effectiveness and developing students′ ability to narrate based on context. When dealing with data, students often encounter confusion and uncertainty. With the assistance of generative artificial intelligence (GenAI), which can act as a teacher, peer, or expert, students engage in learning and inquiry together. This inquiry-based learning process helps students build a solid foundation in data literacy, enabling continuous growth.
Therefore, this study developed a Smart Inquiry-Based Learning Companion System based on GenAI technology to support students in their course-related chat-based inquiry learning. The system utilizes GenAI to create a chatbot with which students can interact, ask questions, and acquire knowledge. Additionally, the system includes a discussion area where group members can review and discuss their interactions with the chatbot, enhancing their ability to explore questions and find answers using GenAI. This study applied the system to a learning environment involving 53 master′s and part-time students from a university in northern Taiwan over a 16-week period to examine the system′s impact on students′ data literacy, visualization skills, and learning motivation.
The results of this study indicate that the Smart Inquiry-Based Learning Companion System developed with GenAI can significantly improve students′ understanding of data visualization charts. The experimental group showed a marked improvement in data visualization chart comprehension compared to the control group. The learning companion system not only compensates for the limitations of onsite teaching resources but also overcomes location and time constraints. As a learning partner, it offers good interaction and immediate responses to questions, as well as analysis and discussion of data perspectives. Moreover, the system trains students to ask precise questions, enhancing their questioning skills, allowing them to quickly identify key issues and propose targeted solutions in the information age.
關鍵字(中) ★ 資料素養
★ 探究式學習
★ 生成式人工智慧
★ 學習同伴
關鍵字(英) ★ Data literacy
★ Inquiry-based learning
★ Generative artificial intelligence
★ Learning companion
論文目次 中文摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 x
表目錄 xii
一、 緒論 1
1-1 研究背景與動機 1
1-2 研究目的 2
1-3 研究問題 3
1-4 名詞定義 3
二、 文獻探討 5
2-1 生成式人工智慧 5
2-1-1 生成式人工智慧的特色 5
2-1-2 生成式人工智慧的應用 6
2-2 聊天機器人 7
2-2-1 聊天機器人的起源 7
2-2-2 聊天機器人的應用 8
2-2-3 聊天機器人的輔助 8
2-3 學習同伴 9
2-3-1 教學對話代理與虛擬學習同伴 9
2-3-2 虛擬學習同伴於教育中的角色 10
2-4 資料素養 11
2-4-1 資料素養能力 11
2-4-2 資料素養模型 12
2-4-3 資料素養評量 14
2-5 探究式學習 14
2-5-1 探究式教學法 15
2-5-2 探究式學習特點 15
2-5-3 探究學習在教育場景應用 16
2-6 學習動機 17
2-6-1 學習動機的因素 18
2-6-2 內在/外在動機 18
2-6-3 提升學習動機 19
三、 系統設計與實作 20
3-1 系統簡介 20
3-2 系統環境架構 20
3-2-1 伺服器環境 20
3-2-2 前端使用者介面 20
3-2-3 後端技術 21
3-2-4 程式開發與提示詞 21
3-2-5 智慧探究式學習同伴系統架構圖 22
3-3 系統功能介紹及設計概念 23
3-3-1 功能列表、網站地圖 23
3-3-2 智慧探究式學習同伴系統聊天室介紹 25
3-3-3 智慧探究式學習同伴系統討論區介紹 26
3-3-4 智慧探究式學習同伴系統儀表板介紹 30
四、 研究方法 36
4-1 研究設計 36
4-2 研究對象 36
4-3 實驗設計 36
4-3-1 教材製作前置期 37
4-3-2 教學實踐期 38
4-3-3 資料分析期 41
4-4 研究工具 41
4-4-1 視覺素養能力評量 41
4-4-2 評估學生探究能力量表 41
4-4-3 學生探究能力自評量表 42
4-4-4 資料素養問卷 42
4-4-5 學習動機問卷 42
4-4-6 資料視覺化個人實作作業 43
4-4-7 資料視覺化小組專題作業 44
4-4-8 系統可用性與易用性問卷 44
4-4-9 生成式人工智慧態度之開放式問題 45
4-5 資料收集與分析 46
4-5-1 敘述性統計 46
4-5-2 問卷信度分析 46
4-5-3 常態分佈 47
4-5-4 曼惠特尼U檢定 47
4-5-5 魏克森符號檢定 47
4-5-6 滯後序列分析 48
4-5-7 評分者交互一致性 (Cohen’s kappa) 48
4-5-8 共變異數分析(ANCOVA) 48
五、 研究結果 49
5-1 資料視覺化圖表理解力 49
5-2 探究能力 50
5-3 資料素養能力 54
5-4 學習動機與學習策略 55
5-4-1 學習動機價值成分 55
5-4-2 學習動機期望成分 58
5-4-3 學習動機情感成分 61
5-4-4 學習策略認知與後設認知 62
5-4-5 學習策略資源管理 65
5-5 系統可用性與易用性分析 68
5-6 學習同伴系統引導學生聊天序列分析 69
5-6-1 行為序列敘述性統計 70
5-6-2 整體學生聊天行為序列 70
5-6-3 高資料視覺化圖表理解組聊天行為序列 71
5-6-4 中資料視覺化圖表理解組聊天行為序列 73
5-6-5 低資料視覺化圖表理解組聊天行為序列 75
5-7 開放式問題探討 77
5-7-1 生成式人工智慧在問題解決和觀點分析均能提供支持 77
5-7-2 生成式人工智慧優點與缺點 78
5-7-3 生成式人工智慧增加提問技巧 79
六、 討論 81
6-1 GenAI 產生探究式學習模型在學科能力與探究能力變化 81
6-2 GenAI對於學習動機無顯著變化 82
6-3 聊天機器人於課程中的輔助 82
6-4 聊天機器人扮演學習同伴 83
6-5 生成探究式學習步驟 83
七、 結論與建議 85
7-1 研究結論 85
7-1-1 智慧探究式學習同伴系統提升資料視覺化圖表理解能力 85
7-1-2 智慧探究式學習同伴系統對於資料素養能力無顯著差異 85
7-1-3 智慧探究式學習同伴系統對於探究能力自評無顯著差異 86
7-1-4 智慧探究式學習同伴系統對於學習動機無顯著差異 86
7-1-5 智慧探究式學習同伴系統協助學生解決問題 86
7-1-6 智慧探究式學習同伴系統成為虛擬學習同伴 87
7-2 研究限制 87
7-2-1 探究式學習框架沒有強制性 87
7-2-2 實驗樣本數較小 87
7-2-3 控制組生成式人工智慧使用的限制 87
7-2-4 聊天室區分任務主題困境 88
7-2-5 GPT差異 88
7-3 未來展望 88
參考文獻 90
附錄一 知情同意書 97
附錄二 探究能力問卷 99
附錄三 資料素養問卷 100
附錄四 學習動機問卷 102
附錄五 學習策略問卷 104
附錄六 系統面向問卷 107
附錄七 探究能力問卷分析結果 108
附錄八 資料素養問卷分析結果 112
附錄九 學習動機價值成分問卷分析結果 119
附錄十 學習動機期望成分問卷分析結果 123
附錄十一 學習動機情感成分問卷分析結果 127
附錄十二 學習策略認知與後設認知問卷分析結果 129
附錄十三 學習策略認資源管理問卷分析結果 135
附錄十四 課程開放式問題 137
附錄十五 前測視覺素養能力評量 138
附錄十六 後測視覺素養能力評量 142
附錄十七 每週任務 145
附錄十八 全球超級市場訂單2016_中譯版 146
附錄十九 交通部觀光局來臺資料97年1月至108年12月 147
參考文獻 黃馨儀, & 陳建雄. (2012). 社群網站之智慧型行動裝置使用者介面研究. 工業設計(127), 138-143. https://doi.org/10.29918/ID.201211.0007
楊秀停, & 王國華. (2007). 實施引導式探究教學對於國小學童學習成效之影響. 科學教育學刊. https://doi.org/10.6173/CJSE.2007.1504.05
Abdi, A. (2014). The Effect of Inquiry-based Learning Method on Students’ Academic Achievement in Science Course. Universal Journal of Educational Research, 2(1), 37-41. https://doi.org/10.13189/ujer.2014.020104
Alt, D. (2015). College students’ academic motivation, media engagement and fear of missing out. Computers in Human Behavior, 49, 111-119. https://doi.org/10.1016/j.chb.2015.02.057
Arsenyan, J., & Mirowska, A. (2021). Almost human? A comparative case study on the social media presence of virtual influencers. International Journal of Human-Computer Studies, 155. https://doi.org/10.1016/j.ijhcs.2021.102694
Aydin, Ö., & Karaarslan, E. (2023). Is ChatGPT Leading Generative AI? What is Beyond Expectations? Academic Platform Journal of Engineering and Smart Systems, 11(3), 118-134. https://doi.org/10.21541/apjess.1293702
Bakar, R. (2014). THE EFFECT OF LEARNING MOTIVATION ON STUDENT’S PRODUCTIVE COMPETENCIES IN VOCATIONAL HIGH SCHOOL, WEST SUMATRA. International Journal of Asian Social Science, 4(6), 722-732International Journal of Asian Social Science. http://www.aessweb.com/journals/5007
Bradeško, L., & Mladenić, D. (2012). A Survey of Chabot Systems through a Loebner Prize Competition. https://www.researchgate.net/publication/235664166
Burke, B. N. (2014). THE_ITEEA_6E_Learning_byDeSIGN. Technology and Engineering Teacher, 73(6), 14-17. https://eric.ed.gov/?id=EJ1049196
Chan, C. K. Y., & Lee, K. K. W. (2023). The AI generation gap: Are Gen Z students more interested in adopting generative AI such as ChatGPT in teaching and learning than their Gen X and millennial generation teachers? Smart Learning Environments, 10(1). https://doi.org/10.1186/s40561-023-00269-3
Chan, T.-W., & Baskin, A. B. (1988). Studying with the prince the computer as a learning companion. http://chan.lst.ncu.edu.tw/paper2/img00655.pdf
Chan, T. W. (1996). Learning companion systems social learning systems and the global social learning club. Journal of Artificial Intelligence in Education. https://www.proquest.com/docview/1468384746
Chen, Z. H., Chou, C. Y., Biswas, G., & Chan, T. W. (2011). Substitutive competition: Virtual pets as competitive buffers to alleviate possible negative influence on pupils. British Journal of Educational Technology, 43(2), 247-258. https://doi.org/10.1111/j.1467-8535.2011.01174.x
Chiplin-Williams, G. J. (1997). The effects of peer-mediated versus adult-mediated intervention on learning community and domestic skills. https://www.proquest.com/openview/d6be985ec121d04fc1bf5e9b9f42c7a5/
Cooper, G. (2023). Examining Science Education in ChatGPT: An Exploratory Study of Generative Artificial Intelligence. Journal of Science Education and Technology, 32(3), 444-452. https://doi.org/10.1007/s10956-023-10039-y
Cox, C., & Tzoc, E. (2023). ChatGPT: Implications for academic libraries. College & Research Libraries. https://doi.org/10.5860/crln.84.3.99
Crusoe, D. (2016). Data Literacy defined pro populo To read this article please provide a little information. The Journal of Community Informatics, 12(3). https://doi.org/https://doi.org/10.15353/joci.v12i3.3276
Dakakni, D., & Safa, N. (2023). Artificial intelligence in the L2 classroom: Implications and challenges on ethics and equity in higher education: A 21st century Pandora′s box. Computers and Education: Artificial Intelligence, 5. https://doi.org/10.1016/j.caeai.2023.100179
Dale, R. (2021). GPT-3: What’s it good for? Natural Language Engineering, 27(1), 113-118. https://doi.org/10.1017/S1351324920000601
Dogan, M. E., Goru Dogan, T., & Bozkurt, A. (2023). The Use of Artificial Intelligence (AI) in Online Learning and Distance Education Processes: A Systematic Review of Empirical Studies. Applied Sciences, 13(5). https://doi.org/10.3390/app13053056
Dwoskin, E. (2014). Big Data′s High-Priests of Algorithms; ′Data Scientists′ Meld Statistics and Software for Find Lucrative High-Tech Jobs. Wall Street Journal (Online). https://www.proquest.com/newsstand/docview/1552020409
Escalante, J., Pack, A., & Barrett, A. (2023). AI-generated feedback on writing: insights into efficacy and ENL student preference. International Journal of Educational Technology in Higher Education, 20(1). https://doi.org/10.1186/s41239-023-00425-2
Ettinger, A. (2020). What BERT Is Not: Lessons from a New Suite of Psycholinguistic
Diagnostics for Language Models. Transactions of the Association for Computational Linguistics, 8, 34-48. https://doi.org/10.1162/tacl_a_00298
Fu, S., Gu, H., & Yang, B. (2020). The affordances of AI‐enabled automatic scoring applications on learners’ continuous learning intention: An empirical study in China. British Journal of Educational Technology, 51(5), 1674-1692. https://doi.org/10.1111/bjet.12995
García-Carmona, A. (2020). From Inquiry-Based Science Education to the Approach Based on Scientific Practices. Science & Education, 29(2), 443-463. https://doi.org/10.1007/s11191-020-00108-8
Gebre, E. (2022). Conceptions and perspectives of data literacy in secondary education. British Journal of Educational Technology, 53(5), 1080-1095. https://doi.org/10.1111/bjet.13246
George, D., & Mallery, P. (2019). IBM SPSS Statistics 26 Step by Step: A Simple Guide and Reference (16th ed.). Routledge. https://doi.org/10.4324/9780429056765
Gholam, A. P. (2019). Inquiry-Based Learning_ student teachers challenges and perceptions. https://digitalcommons.buffalostate.edu/jiae/vol10/iss2/6
Grillenberger, A., & Romeike, R. (2018). Developing a theoretically founded data literacy competency model Proceedings of the 13th Workshop in Primary and Secondary Computing Education, https://doi.org/10.1145/3265757.3265766
Gruzd, A., Staves, K., & Wilk, A. (2012). Connected scholars: Examining the role of social media in research practices of faculty using the UTAUT model. Computers in Human Behavior, 28(6), 2340-2350. https://doi.org/10.1016/j.chb.2012.07.004
Hachman, M. (2014). Battle of the digital assistants: Windows Phone Cortana vs Google Now vs Siri. PC World. https://www.pcworld.com/article/444797/
Hampton, N. Z., & Mason, E. (2003). Learning Disabilities, Gender, Sources of Efficacy, Self-Efficacy Beliefs, and Academic Achievement in High School Students. Journal of School Psychology, 41(2), 101-112. https://doi.org/10.1016/s0022-4405(03)00028-1
Handayani, A. D., Herman, T., Fatimah, S., Setyowidodo, I., & Katminingsih, Y. (2018). Inquiry based learning: a student centered learning
to develop mathematical habits of mind. Journal of Physics: Conference Series. https://doi.org/10.1088/1742-6596/1013/1/012115
Hardré, P. L., Crowson, H. M., Debacker, T. K., & White, D. (2007). Predicting the Academic Motivation of Rural High School Students. The Journal of Experimental Education, 75(4), 247-269. https://doi.org/10.3200/jexe.75.4.247-269
Harmer, J. (1988). The Practice of English Language Teaching. PEARSON Longman.
Heidig, S., & Clarebout, G. (2011). Do pedagogical agents make a difference to student motivation and learning? Educational Research Review, 6(1), 27-54. https://doi.org/https://doi.org/10.1016/j.edurev.2010.07.004
Hill, B. M., Dailey, D., Guy, R. T., Lewis, B., Matsuzaki, M., & Morgan, J. T. (2017). Democratizing Data Science: The Community Data Science Workshops and Classes. In Big Data Factories (pp. 115-135). https://doi.org/10.1007/978-3-319-59186-5_9
Hmelo-Silver, C. E., Duncan, R. G., & Chinn, C. A. (2007). Scaffolding and Achievement in Problem-Based and Inquiry Learning: A Response to Kirschner, Sweller, and Clark (2006). Educational Psychologist, 42(2), 99-107. https://doi.org/10.1080/00461520701263368
Hong, J.-C., Lin, C.-H., & Juh, C.-C. (2023). Using a Chatbot to learn English via Charades: the correlates between social presence, hedonic value, perceived value, and learning outcome. Interactive Learning Environments, 1-17. https://doi.org/10.1080/10494820.2023.2273485
Hsieh, T.-L. (2014). Motivation matters? The relationship among different types of learning motivation, engagement behaviors and learning outcomes of undergraduate students in Taiwan. Higher Education, 68(3), 417-433. https://doi.org/10.1007/s10734-014-9720-6
Huang, A. Y. Q., Lu, O. H. T., & Yang, S. J. H. (2023). Effects of artificial Intelligence–Enabled personalized recommendations on learners’ learning engagement, motivation, and outcomes in a flipped classroom. Computers & Education, 194. https://doi.org/10.1016/j.compedu.2022.104684
Hung, C.-Y., Sun, J. C.-Y., & Liu, J.-Y. (2018). Effects of flipped classrooms integrated with MOOCs and game-based learning on the learning motivation and outcomes of students from different backgrounds. Interactive Learning Environments, 27(8), 1028-1046. https://doi.org/10.1080/10494820.2018.1481103
Hwang, G.-J., Xie, H., Wah, B. W., & Gašević, D. (2020). Vision, challenges, roles and research issues of Artificial Intelligence in Education. Computers and Education: Artificial Intelligence, 1. https://doi.org/10.1016/j.caeai.2020.100001
Io, H. N., & Lee, C. B. (2017). Chatbots and Conversational Agents: A Bibliometric Analysis. International Conference on Industrial Engineering and Engineering Management (IEEM). https://doi.org/10.1109/IEEM.2017.8289883
Kiernan, D. A., & Lotter, C. (2019). Inquiry-Based Teaching in the College Classroom: The Nontraditional Student. The American Biology Teacher, 81(7), 479-484. https://doi.org/10.1525/abt.2019.81.7.479
Kılıçkaya, F. (2020). Using a Chatbot, Replika, to Practice Writing Through Conversations in L2 English: A Case Study. In New Technological applications for foreign and second language learning and teaching, 221-238. https://doi.org/10.4018/978-1-7998-2591-3.ch011
Koltay, T. (2017). Data literacy for researchers and data librarians. Journal of Librarianship and Information Science, 49(3), 3-4. https://doi.org/10.1177/0961000615616450
Kumar, V., Dixit, A., Javalgi, R. G., & Dass, M. (2015). Research framework, strategies, and applications of intelligent agent technologies (IATs) in marketing. Journal of the Academy of Marketing Science, 44(1), 24-45. https://doi.org/10.1007/s11747-015-0426-9
Lanise, B., Jesness, R., & Schools., M. P. (2013). One-to-one learning with iPads: Planning & evaluation of teacher professional development. College of Education, Leadership & Counseling. University of ST. Thomas Minnesota. https://scholarcommons.sc.edu/cgi/viewcontent.cgi?article=5336&context=etd
Lee, D., & Yeo, S. (2022). Developing an AI-based chatbot for practicing responsive teaching in mathematics. Computers & Education, 191. https://doi.org/10.1016/j.compedu.2022.104646
Lee, S., Kim, S.-H., & Kwon, B. C. (2017). VLAT: Development of a Visualization Literacy Assessment Test. IEEE Trans Vis Comput Graph, 23(1), 551-560. https://doi.org/10.1109/TVCG.2016.2598920
Lee, Y.-F., Hwang, G.-J., & Chen, P.-Y. (2022). Impacts of an AI-based chabot on college students’ after-class review, academic performance, self-efficacy, learning attitude, and motivation. Educational technology research and development, 70(5), 1843-1865. https://doi.org/10.1007/s11423-022-10142-8
Lim, M. Y. (2012). Memory Models for Intelligent Social Companions. 396, 241-262. https://doi.org/10.1007/978-3-642-25691-2
Lin, F.-C., Chen, C.-M., & Wang, W.-F. (2017). Learning Process Analysis Based on Sequential Pattern Mining and Lag Sequential Analysis in a Web-Based Inquiry Science Environment. 2017 6th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI), 655-660. https://doi.org/https://doi.org/10.1109/IIAI-AAI.2017.57
Lin, K.-Y., Hsiao, H.-S., Williams, P. J., & Chen, Y.-H. (2019). Effects of 6E-oriented STEM practical activities in cultivating middle school students’ attitudes toward technology and technological inquiry ability. Research in Science & Technological Education, 38(1), 1-18. https://doi.org/10.1080/02635143.2018.1561432
Lin, M.-H., Chen, H.-C., & Liu, K.-S. (2017). A Study of the Effects of Digital Learning on Learning Motivation and Learning Outcome. Eurasia Journal of Mathematics, Science and Technology Education, 13(7), 3553-3564. https://doi.org/10.12973/eurasia.2017.00744a
Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., & Byers, A. H. (2011). Big data: The next frontier for innovation, competition, and productivity. McKinsey Global Institute. https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/big-data-the-next-frontier-for-innovation
Marsh, C. (1996). Handbook for Beginning Teachers. Australian Journal of Teacher Education, 22(2). https://doi.org/10.14221/ajte.1997v22n2.8
Maslow, A. H. (1981). Motivation and personality.
National Science Education Standards. (1996). https://doi.org/10.17226/4962
Novak, J. D., & Gowin, D. B. (1984). Learning How to Learn. Cambridge, UK: Cambridge University Press. https://doi.org/https://doi.org/10.1017/CBO9781139173469
Okoronka, A. U., Gwany, D. M., Sakiyo, J., & Filgona, J. (2020). Motivation in Learning. Asian Journal of Education and Social Studies, 16-37. https://doi.org/10.9734/ajess/2020/v10i430273
Pintrich, P. R. (1991). A Manual for the Use of the Motivated Strategies for Learning Questionnaire (MSLQ). ational Center for Research to Improve Postseco
ndary Teaching and Learning, MI. https://eric.ed.gov/?id=ED338122
Quade, D. (1967). Rank Analysis of Covariance. Journal of the American Statistical Association, 62(320), 1187–1200. https://doi.org/https://doi.org/10.2307/2283769
Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving Language Understanding by Generative Pre-Training. https://paperswithcode.com/paper/improving-language-understanding-by
Rawas, S. (2023). ChatGPT: Empowering lifelong learning in the digital age of higher education. Education and Information Technologies. https://doi.org/10.1007/s10639-023-12114-8
Rebolledo Font de la Vall, R., & González Araya, F. (2023). Exploring the Benefits and Challenges of AI-Language Learning Tools. International Journal of Social Sciences and Humanities Invention, 10(01), 7569-7576. https://doi.org/10.18535/ijsshi/v10i01.02
Reeves, T. D., & Honig, S. L. (2015). A classroom data literacy intervention for pre-service teachers. Teaching and Teacher Education, 50, 90-101. https://doi.org/10.1016/j.tate.2015.05.007
Rickel, W. L. J. a. J. W., & Lester, J. C. (2000). Animated Pedagogical Agents: Face-to-Face Interaction in Interactive Learning Environments. https://www.researchgate.net/publication/200772440
Ridsdale, C., Rothwell, J., Smit, M., Bliemel, M., Irvine, D., Kelley, D. E., Matwin, S. S., Wuetherick, B., & Ali-Hassan, H. (2015). Strategies and Best Practices for Data Literacy Education Knowledge Synthesis Report. https://doi.org/10.13140/RG.2.1.1922.5044
Roblyer, M. D., McDaniel, M., Webb, M., Herman, J., & Witty, J. V. (2010). Findings on Facebook in higher education: A comparison of college faculty and student uses and perceptions of social networking sites. The Internet and Higher Education, 13(3), 134-140. https://doi.org/10.1016/j.iheduc.2010.03.002
Ryan, R. M., & Deci, E. L. (2000). Intrinsic and Extrinsic Motivations: Classic Definitions and New Directions. Contemp Educ Psychol, 25(1), 54-67. https://doi.org/10.1006/ceps.1999.1020
Sackett, G. P., Holm, R., Crowley, C., & Henkins, A. (1979). A FORTRAN program for lag sequential analysis of contingency and cyclicity in behavioral interaction data. https://doi.org/10.3758/BF03205679
Sanders, M. (2009). STEM, STEM Education, STEMmania. The Technology Teacher, 68, 20-26. https://www.teachmeteamwork.com/files/sanders.istem.ed.ttt.istem.ed.def.pdf
Shabani, K. (2012). Dynamic assessment of L2 learners’ reading comprehension processes: A Vygotskian perspective. Procedia - Social and Behavioral Sciences, 32, 321-328. https://doi.org/10.1016/j.sbspro.2012.01.047
Shumanov, M., & Johnson, L. (2021). Making conversations with chatbots more personalized. Computers in Human Behavior, 117. https://doi.org/10.1016/j.chb.2020.106627
Stowell, J. R., Oldham, T., & Bennett, D. (2010). Using Student Response Systems (“Clickers”) to Combat Conformity and Shyness. Teaching of Psychology, 37(2), 135-140. https://doi.org/10.1080/00986281003626631
Sung, Y.-T., Chang, K.-E., & Liu, T.-C. (2016). The effects of integrating mobile devices with teaching and learning on students′ learning performance: A meta-analysis and research synthesis. Computers & Education, 94, 252-275. https://doi.org/10.1016/j.compedu.2015.11.008
Surameery, N. M. S., & Shakor, M. Y. (2023). Use Chat GPT to Solve Programming Bugs. International Journal of Information technology and Computer Engineering(31), 17-22. https://doi.org/10.55529/ijitc.31.17.22
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., & Kaiser, Ł. (2017). Attention Is All You Need. Advances in Neural Information Processing Systems, 30. https://papers.nips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
Vygotsky, L. S. (1978). Mind in society: Development of higher psychological processes. Harvard university press.
Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2015). Defining Computational Thinking for Mathematics and Science Classrooms. Journal of Science Education and Technology, 25(1), 127-147. https://doi.org/10.1007/s10956-015-9581-5
Wilson, L., & Marasoiu, M. (2022). The Development and Use of Chatbots in Public Health: Scoping Review. JMIR Hum Factors, 9(4), e35882. https://doi.org/10.2196/35882
Yata, C., Ohtani, T., & Isobe, M. (2020). Conceptual framework of STEM based on Japanese subject principles. International Journal of STEM Education, 7(1). https://doi.org/10.1186/s40594-020-00205-8
Younas, M., & Noor, U. (2020). Inquiry-based learning-undergraduate research: the German multidisciplinary experience. Educational Gerontology, 46(12), 830-832. https://doi.org/10.1080/03601277.2020.1828761
Zhang, M., & Li, J. (2021). A commentary of GPT-3 in MIT Technology Review 2021. Fundamental Research, 1(6), 831-833. https://doi.org/10.1016/j.fmre.2021.11.011
Zhu, Y., Lou, Z., Ge, T., Wu, T., Wang, Y., Tan, T., & Wang, J. (2021). An Interactive Mixed Reality Platform for Inquiry-Based Education. 2021 IEEE 7th International Conference on Virtual Reality (ICVR), 324-331. https://doi.org/10.1109/icvr51878.2021.9483827
指導教授 洪暉鈞(Hui-Chun Hung) 審核日期 2024-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明