博碩士論文 111521071 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:18.222.107.27
姓名 郭泳君(Yong-Chun Kuo)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 N 型鎂矽錫之元件測試與模組製作
(Study of N-type Mg2(SiSn) Thermoelectric Devices and Modules)
相關論文
★ 以熱熔異質磊晶成長法製造之鍺光偵測器★ 在SOI基板上以快速熱熔法製造高品質鍺及近紅外線光偵測元件之研製
★ 鉭錳合金及銅鍺化合物應用於積體電路後段製程中銅導線之研究★ 快速熱熔磊晶成長法製造側向PIN(Ge-Ge-Si)光偵測器
★ 二維薄膜及三維塊材Seebeck係數量測★ 塊材、薄膜與奈米線之熱導係數量測方法探討
★ 以快速熱熔異質磊晶成長法製作鍺矽累增型光偵測器★ 以快速熱熔融磊晶成長法製作 鍺錫合金PIN型光偵測器
★ 利用火花電漿燒結法製備以矽為基底之奈米材料於熱電特性上之應用研究★ P型金屬氧化物薄膜的製備應用於軟性電子
★ 金屬氧化物製備應用於軟性電子元件★ 超導材料釔鋇銅氧化物熱電特性量測分析
★ 鎂矽錫合金熱電特性研究及應用★ 矽基熱電模組開發及特性研究
★ P型金屬氧化物與硫化物之研究★ 物聯網之熱感測器應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年來,大眾對環保議題愈加關注,加之能源枯竭,促使可再生和可持續循環利用的替代能源材料與綠能發電成為當前的研發重點。熱電材料是一種無污染且能在高溫環境下利用溫差直接將熱能轉換為電能,或將電能轉換為熱能的功能性材料,在能源轉換和冷卻技術中具有重要應用。但僅使用N型熱電材料無法達到預期效果,必須將N型與P型熱電塊材串接成熱電元件,確保在溫差下所產生的電壓為N、P型塊材個別電壓的總和,從而產生足夠的電能,然後再將多對元件組成模組。因此,研究的重點在於熱電塊材與電極之間在高溫下的接合方法和防止元素擴散。
在以往N型鎂矽錫熱電材料中混合不同鎂矽比例的基礎上,本實驗選擇了Mg2SnBi0.02+20at%Mg+4%MgSi作為熱電材料。我們使用了不同種類、厚度且具有低電阻率、高機械強度、良好熱穩定性並能與熱電試片產生適當反應的金屬材料作為接觸金屬。然後通過冷壓將金屬材料與鎂矽錫熱電材料接合,並進行600°C持溫1小時的退火處理。電性量測後,使用焊槍焊接、銀漿串接以及在試片表面鍍膜橋接金屬等方法進行串接。或是先將鎂矽錫粉末冷壓後加入接觸金屬和橋接金屬串接,再用石墨紙與鎳膠包覆後一起退火,並與N、P型低鎂矽錫粉末共同冷壓後退火等方法製作出N型低鎂矽錫塊材與P型低鎂矽錫塊材的熱電元件。根據各別元件的電性量測結果比較出最佳的串接方法,最後以此方法製作出熱電模組,並進行模組的電性量測。
摘要(英) In recent years, the public has increasingly focused on environmental issues. With the depletion of energy resources, the development of renewable and recyclable energy materials has become a primary research objective. Thermoelectric materials, which are non-polluting and capable of directly converting thermal energy into electrical energy or vice versa through sufficient temperature differences in high-temperature environments, have significant applications in energy conversion and cooling technologies. However, using only N-type thermoelectric materials is insufficient. It is necessary to connect N-type and P-type thermoelectric materials into thermoelectric devices, ensuring that the voltage under temperature differences is the sum of the voltages of the N-type and P-type thermoelectric materials. Multiple pairs of these devices can then form modules. Therefore, the research focuses on bonding techniques for thermoelectric block materials and preventing element diffusion at high temperatures.
For this experiment, the chosen thermoelectric material is Mg2SnBi0.02+20at%Mg+4%MgSi, based on previous studies that explored different ratios of magnesium and silicon in N-type magnesium-silicon-tin materials. To make electrical connections, various metal materials with low resistivity, high mechanical strength, and good thermal stability were cold-pressed together with the thermoelectric materials and annealed at 600°C for one hour. Different connection methods, including welding, silver paste connection, and sputter-bridging of metals on the specimen surface, were used. Additionally, magnesium-silicon-tin powder was cold-pressed, contact metals and bridging metals were added for connection, and the specimen was covered with graphite paper and nickel adhesive before annealing. N-type and P-type low magnesium-silicon-tin thermoelectric elements were produced by co-cold-pressing and annealing N-type and P-type low magnesium-silicon-tin powders. The optimal connection method was determined, and a thermoelectric module was created and measured.
關鍵字(中) ★ N型鎂矽錫
★ 元件測試
★ 模組製作
關鍵字(英) ★ N-type Mg2(SiSn)
★ Thermoelectric Devices and Modules
論文目次 摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 viii
表目錄 xii
1 第一章 緒論 1
1-1 前言 1
1-2 熱電材料 2
1-3 熱電模組介紹 4
1-4 熱電效應實際應用 5
1-4-1 熱電致冷模組應用 6
1-4-2 熱電發電模組應用 7
2 第二章 熱電原理與實驗儀器 12
2-1 熱電效應概論(Thermoelectric Effect) 12
2-1-1 席貝克效應(Seebeck effect) 12
2-1-2 帕爾帖效應(Peltier effect) 14
2-1-3 湯姆森效應(Thomson effect) 15
2-1-4 熱電優值ZT(Figure of merit)與轉換效率(Conversion efficiency) 15
2-2 文獻回顧 17
2-2-1 鎂矽錫合金材料介紹 17
2-2-2 鎂矽化合物介紹 20
2-2-3 金屬接觸與擴散阻障層材料介紹 21
2-2-4 鋁作為鎂矽錫合金之接觸金屬 22
2-2-5 固液擴散接合技術 23
2-3 研究動機與目的 25
2-4 實驗儀器 26
2-4-1 電阻率量測 26
2-4-2 Seebeck係數量測 27
2-4-3 密度量測 29
2-4-4 熱擴散係數量測 30
2-4-5 比熱量測 31
2-4-6 熱導率 31
2-4-7 掃描式電子顯微鏡分析(SEM) 32
2-4-8 X射線繞射儀 33
2-4-9 離子濺鍍機台 33
2-4-10 模組輸出電性量測 34
3 第三章 實驗方法與製程 37
3-1 實驗前言 37
3-2 鎂矽錫塊材製作 38
3-2-1 N-type 矽粉摻雜 38
3-2-2 N-type Mg2Si 粉末製作 40
3-2-3 MgSiSn塊材製作 43
3-3 熱電材料之金屬接觸製作 45
3-4 熱電元件製作 46
3-5 熱電模組製作 47
4 第四章 結果討論 50
4-1 N型鎂矽錫試片之熱電試片特性 50
4-2 P型、N型鎂矽錫粉末一同冷壓之模組 52
4-2-1 中間金屬測試 52
4-2-2 外側金屬測試 54
4-2-3 一起冷壓之元件與模組比較 56
4-3 P型、N型鎂矽錫塊材與金屬一同退火之模組 58
4-3-1 不同金屬的兩對PN模組電性 58
4-3-2 相同金屬一起退火之元件與模組電性比較 60
4-3-3 相同金屬一起退火後焊接之元件與模組電性比較 62
4-4 熱電模組方法比較結果 65
4-5 熱電模組測試結果 68
4-5-1 AB膠加銀漿之60對模組電性結果 68
4-5-2 退火串接加焊接之106對模組電性結果 70
5 第五章 結論與未來展望 74
參考文獻 76
參考文獻 [1] Snyder GJ, Toberer ES. "Complex thermoelectric materials." Nat Mater. 2008 Feb;7(2):105-14. doi: 10.1038/nmat2090. PMID: 18219332.
[2] H. G. a. R. Douglas, "The use of semiconductors in thermoelectric refrigeration," 1954. [Online]. Available: https://iopscience.iop.org/article/10.1088/0508-3443/5/11/303/pdf.
[3] D. M. Rowe, CRC Handbook of Thermoelectrics. CRC press, 2018.
[4] T. Zhu, Y. Liu, C. Fu, J. P. Heremans, J. G. Snyder, and X. Zhao, "Compromise and Synergy in High-Efficiency Thermoelectric Materials," Advanced Materials, vol. 29, no. 14, p. 1605884, 2017, doi: https://doi.org/10.1002/adma.201605884.
[5] 江明修, "脈衝雷射沉積高導電性之碲化鎵/碲週期排列奈米複合結構於熱電轉換之應用," 新竹市, 2012. [Online]. Available: https://hdl.handle.net/11296/834zp2.
[6] J. C. Ignacio Rodriguez-Barber, Laura Luhmann, Aidan Cowley, Eckhard Mueller,Johannes de Boor, "On the influence of AgMg precursor formation on MgAgSb microstructure and thermoelectric properties," 2020, doi: https://doi.org/10.1016/j.jallcom.2020.158384.
[7] X. Zhang, Z. Bu, S. Lin, Z. Chen, W. Li, and Y. Pei, "GeTe Thermoelectrics," Joule, vol. 4, no. 5, pp. 986-1003, 2020/05/20/ 2020, doi: https://doi.org/10.1016/j.joule.2020.03.004.
[8] E. S. G. Mesaritis , A. Delimitis , M. Constantinou , G. Constantinides ,M. Jeagle, K. Tarantik , Th Kyratsi, "Synthesis, characterization and thermoelectric performance of Mg2(Si,Sn,Ge) materials using Si-kerf waste from photovoltaic technology," 2020, doi: 10.1103/PhysRevLett.108.166601.
[9] S. L. F. Y. Wang, K.C. Shen,H.L. Sun, Y.G. Yang, G.W. Ji, J. Li, Z. Jiang, F. Song, "Manifestation of the structural stability of Mg-doped Zn4Sb3 via atomic fine structure investigation," 2017.
[10] M. Z. Bo Yu, Hui Wang, Kevin Lukas, Hengzhi Wang, Dezhi Wang, Cyril Opeil, Mildred Dresselhaus, Gang Chen, and Zhifeng Ren, "Enhancement of Thermoelectric Properties by Modulation-Doping in Silicon Germanium Alloy Nanocomposites," 2012.
[11] A. F. May, E. Flage-Larsen, and G. J. Snyder, "Electron and phonon scattering in the high-temperature thermoelectric La 3 Te 4 − z M z ( M = Sb , Bi )," Physical Review B, vol. 81, p. 125205, 2010.
[12] S. B. Chenguang Fu, Yintu Liu, Yunshan Tang, Lidong Chen, Xinbing Zhao & Tiejun Zhu, "Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials," 2015.
[13] A. L. P. Eliana Vieira, José P. B. Silva,Vítor H. Magalhães,Francisco P. Brito,Manuel Silva,Andre Pereira,L.M. Goncalves, "High-Performance μ-Thermoelectric Device Based on Bi2Te3/Sb2Te3 p-n Junctions," 2019, doi: 10.1021/acsami.9b13254.
[14] L.-D. Z. Xiao Zhang, "Thermoelectric materials: Energy conversion between heat and electricity," 2015.
[15] T. V. Gunstein Skomedal , Nikola Kanas, Sathya P. Singh,Mari-Ann Einarsrud, Kjell Wiik, Peter Hugh Middleton, "Long term stability testing of oxide unicouple thermoelectric modules " 2017.
[16] F. X. Limei Shen, Huanxin Chen, Shengwei Wang, "Investigation of a novel thermoelectric radiant air-conditioning system," 2013.
[17] C.-X. L. Robel Kiflemariam, "Numerical simulation of integrated liquid cooling and thermoelectric generation for self-cooling of electronic devices," 2015.
[18] A. Z.-G. Hussam Jouhara, Navid Khordehgah,Qusay Doraghi,Lujean Ahmad, Les Norman, Brian Axcell, Luiz Wrobel, Sheng Daid, "Thermoelectric generator (TEG) technologies and applications," 2021.
[19] 宋柏毅, 陳光耀, and 林育立, "熱電發電技術應用現況與發展," (in 繁體中文), 燃燒季刊, no. 87, pp. 26-37, 2014, doi: 10.30041/cq.201411_(87).0004.
[20] T. K. H.T. Kaibe, Shinichi Fujimoto,Kazuya Makino,Hirokuni Hachiuma, "Recovery of Plant Waste Heat by a Thermoelectric Generating System," 2011.
[21] J. L. DOUG CRANE, VLADIMIR JOVOVIC,MARCO RANALLI,MARTIN ADLDINGER,ERIC POLIQUIN,JOE DEAN,DMITRI KOSSAKOVSKI,BORIS MAZARand CLAY MARANVILLE, "TEG On-Vehicle Performance and Model Validation and What It Means for Further TEG Development," 2012.
[22] E. J. T. a. M. A. Steiner, "Semiconductor-dielectric-metal solar absorbers with high spectral selectivity," 2022.
[23] D. F. W. Christopher S.R. Matthes, Terry J. Hendricks, "Risk management for dynamic Radioisotope Power Systems," 2018.
[24] A. O. Zahrasadat Tabaie, "Human body heat-driven thermoelectric generators as a sustainable power supply for wearable electronic devices: Recent advances, challenges, and future perspectives " 2023.
[25] Y. S. Yancheng Wang, Deqing Meia, Zichen Chen, "Wearable thermoelectric generator to harvest body heat for powering a miniaturized accelerometer," 2018.
[26] J. D. M. Wehbe, E. Sassine, "House electrical generation using thermoelectric cinder block: Case study on Lebanese hollow block," 2022.
[27] M. Thakkar, ""A report on" Peltier (thermoelectric) cooling module," 2016.
[28] A. Shakouri, "Recent developments in semiconductor thermoelectric physics and materials," Annual review of materials research, vol. 41, pp. 399-431, 2011.
[29] A. Shakouri, "Recent developments in semiconductor thermoelectric physics and materials," 2011.
[30] Z. L. C. Xiao, K. Li, P. Huang, and Y. Xie, "Decoupling interrelated parameters for designing high performance thermoelectric materials," 2014.
[31] C. Xiao, Z. Li, K. Li, P. Huang, and Y. Xie, "Decoupling interrelated parameters for designing high performance thermoelectric materials," Acc Chem Res, vol. 47, no. 4, pp. 1287-95, Apr 15 2014, doi: 10.1021/ar400290f.
[32] M. Søndergaard, M. Christensen, K. Borup, H. Yin, and B. Iversen, "Thermal stability and thermoelectric properties of Mg2Si0.4Sn0.6 and Mg2Si0.6Sn0.4," Journal of Materials Science, vol. 48, pp. 2002-2008, 03/01 2013, doi: 10.1007/s10853-012-6967-0.
[33] Y. Hayatsu et al., "Fabrication of large sintered pellets of Sb-doped n-type Mg2Si using a plasma activated sintering method," Journal of Solid State Chemistry, vol. 193, pp. 161-165, 2012/09/01/ 2012, doi: https://doi.org/10.1016/j.jssc.2012.07.008.
[34] T. Sakamoto et al., "Thermoelectric Characteristics of a Commercialized Mg 2 Si Source Doped with Al, Bi, Ag, and Cu," Journal of Electronic Materials - J ELECTRON MATER, vol. 39, pp. 1708-1713, 04/14 2010, doi: 10.1007/s11664-010-1155-y.
[35] R. J. LaBotz, D. R. Mason, and D. F. O′Kane, "The Thermoelectric Properties of Mixed Crystals of Mg2Gex Si1 − x," Journal of The Electrochemical Society, vol. 110, no. 2, p. 127, 1963/02/01 1963, doi: 10.1149/1.2425689.
[36] J. Mao et al., "Thermoelectric properties of materials near the band crossing line in Mg2Sn–Mg2Ge–Mg2Si system," Acta Materialia, vol. 103, pp. 633-642, 2016/01/15/ 2016, doi: https://doi.org/10.1016/j.actamat.2015.11.006.
[37] V. K. Zaitsev et al., "Highly effectiveMg2Si−xSnxthermoelectrics," Physical Review B, vol. 74, no. 4, p. 045207, 07/14/ 2006, doi: 10.1103/PhysRevB.74.045207.
[38] W. Liu et al., "Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si(1-x)Sn(x) solid solutions," Physical Review Letters, vol. 108, no. 16, p. 166601, 04/18/ 2012, doi: 10.1103/PhysRevLett.108.166601.
[39] X. Zhang, H. Liu, Q. Lu, J. Zhang, and F. Zhang, "Enhanced thermoelectric performance of Mg2Si0.4Sn0.6 solid solutions by in nanostructures and minute Bi-doping," Applied Physics Letters, vol. 103, 08/06 2013, doi: 10.1063/1.4816971.
[40] M. Ioannou, K. Chrissafis, E. Pavlidou, F. Gascoin, and T. Kyratsi, "Solid-state synthesis of Mg2Si via short-duration ball-milling and low-temperature annealing," Journal of Solid State Chemistry, vol. 197, pp. 172-180, 2013/01/01/ 2013, doi: https://doi.org/10.1016/j.jssc.2012.08.051.
[41] D. Stathokostopoulos et al., "Synthesis and characterization of nanostructured Mg2Si by pack cementation process," Results in Materials, vol. 13, p. 100252, 2022/03/01/ 2022, doi: https://doi.org/10.1016/j.rinma.2021.100252.
[42] 張友競, "中高溫熱電模組之擴散阻障層研究," 碩士, 材料科學與工程學研究所, 國立臺灣大學, 2016.
[43] S. Abbas Malik, L. Thanh Hung, and N. Van Nong, "Contact of ZnSb thermoelectric material to metallic electrodes using S-Bond 400 solder alloy," Materials Today: Proceedings, vol. 8, pp. 625-631, 2019/01/01/ 2019, doi: https://doi.org/10.1016/j.matpr.2019.02.062.
[44] D. Mangelinck, T. Luo, and C. Girardeaux, "Reactive diffusion in the presence of a diffusion barrier: Experiment and model," Journal of Applied Physics, vol. 123, no. 18, p. 185301, 2018, doi: 10.1063/1.5023578.
[45] B. Zhang et al., "Contact resistance and stability study for Au, Ti, Hf and Ni contacts on thin-film Mg2Si," Journal of Alloys and Compounds, vol. 699, pp. 1134-1139, 2017/03/30/ 2017, doi: https://doi.org/10.1016/j.jallcom.2016.12.229.
[46] J. M. Park et al., "Enhanced output power of thermoelectric modules with reduced contact resistance by adopting the optimized Ni diffusion barrier layer," Journal of Alloys and Compounds, vol. 884, p. 161119, 2021/12/05/ 2021, doi: https://doi.org/10.1016/j.jallcom.2021.161119.
[47] J. Camut et al., "Aluminum as promising electrode for Mg2(Si,Sn)-based thermoelectric devices," Materials Today Energy, vol. 21, p. 100718, 2021/09/01/ 2021, doi: https://doi.org/10.1016/j.mtener.2021.100718.
[48] 莊東漢, "擴散軟銲技術在電子封裝之應用," 電子月刊, vol. 52,pp. 118-125, 1999.
[49] A. Rautiainen, V. Vuorinen, J. Li, and M. Paulasto-Kröckel, "Vertical cracking of Cu-Sn solid-liquid interdiffusion bond under thermal shock test," Materials Today: Proceedings, vol. 4, no. 7, Part 2, pp. 7093-7100, 2017/01/01/ 2017, doi: https://doi.org/10.1016/j.matpr.2017.08.002.
[50] 蔡淯紘, "N型鎂矽錫熱電材料之製程開發與模組製作," 電機工程學系, 2023.
指導教授 辛正倫(Cheng-Lun Hsin) 審核日期 2024-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明