博碩士論文 111521081 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:3.142.124.83
姓名 盧俊廷(Chun-Ting Lu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 N型鎂矽錫熱電材料之接觸金屬及模組製作
(Fabrication of Contact Metals and Modules for N-type Mg2(SiSn) Thermoelectric Materials)
相關論文
★ 以熱熔異質磊晶成長法製造之鍺光偵測器★ 在SOI基板上以快速熱熔法製造高品質鍺及近紅外線光偵測元件之研製
★ 鉭錳合金及銅鍺化合物應用於積體電路後段製程中銅導線之研究★ 快速熱熔磊晶成長法製造側向PIN(Ge-Ge-Si)光偵測器
★ 二維薄膜及三維塊材Seebeck係數量測★ 塊材、薄膜與奈米線之熱導係數量測方法探討
★ 以快速熱熔異質磊晶成長法製作鍺矽累增型光偵測器★ 以快速熱熔融磊晶成長法製作 鍺錫合金PIN型光偵測器
★ 利用火花電漿燒結法製備以矽為基底之奈米材料於熱電特性上之應用研究★ P型金屬氧化物薄膜的製備應用於軟性電子
★ 金屬氧化物製備應用於軟性電子元件★ 超導材料釔鋇銅氧化物熱電特性量測分析
★ 鎂矽錫合金熱電特性研究及應用★ 矽基熱電模組開發及特性研究
★ P型金屬氧化物與硫化物之研究★ 物聯網之熱感測器應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 隨著時代變遷,AI及電動車迅速發展,伴隨能源大量消耗,石化能源日益減少及環保意識抬頭,人們開始積極探索替代能源,可再生能源也受到重視。熱電材料是一種可再生能源的應用,擁有舉足輕重地位。熱電元件能將熱能直接轉換為電能,或反向將電能轉換為熱能。這種雙向能量轉換的能力使其在能源回收、冷卻系統以及可再生能源應用中展現了巨大的潛力。
本實驗利用N型Mg2(SiSn)熱電材料製作出PN元件並且使40對PN元件焊接成大型熱電模組。Mg2Si混合固定比例Mg2Sn,透過粉末摻雜、混合、放上接觸金屬(焊接用)、冷壓成型、高溫燒結等步驟製作出N型Mg2(SiSn)熱電元件,同時在此階段進行電性量測和分析,進而確定粉末摻雜配比及合適焊接的接觸金屬。再來與實驗室同學研究的P型Mg2(SiSn)熱電塊材搭配,組成單對PN型熱電元件。最後我們選定擁有優異熱電性能的PN元件,大量製作單對PN元件,焊接使其串接成大型模組。
摘要(英) As technology advances, AI and electric vehicles are rapidly developing. The increasing energy consumption and depletion of fossil fuels, coupled with rising environmental awareness, have spurred interest in alternative energy sources, particularly renewable energy. Thermoelectric materials, which can convert heat into electricity and vice versa, play a critical role in this field, offering potential in energy recovery, cooling systems, and renewable energy applications.
This experiment builds on previous research with N-type Mg2(SiSn) thermoelectric materials. We prepared N-type thermoelectric components by mixing a fixed proportion of Mg2Si with Mg2(SiSn), followed by powder doping, mixing, placing contact metals, cold pressing, and high-temperature sintering. Electrical measurements and analyses were conducted to determine the optimal doping ratios and contact metals. These N-type components were then paired with P-type Mg2(SiSn) materials to form single PN-type thermoelectric devices. Finally, we selected the best-performing PN devices and produced them in large quantities. These devices were welded into a large-scale module, achieving an output voltage of 1V.
關鍵字(中) ★ 鎂矽錫
★ 熱電材料
★ 熱電轉換效應
★ 熱電優值
★ 粉末冶金製程
★ 熱電模組
關鍵字(英)
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vii
表目錄 xii
第一章 緒論 1
1-1 前言 1
1-2 熱電材料發展歷史 1
1-3 熱電特性的前景與應用 4
第二章、熱電特性與文獻回顧 5
2-1 前言 5
2-2 熱電特性與理論 5
2-2-1 熱電優值(ZT) 5
2-2-2 Seebeck Effect 7
2-2-3 Peltier Effect 8
2-2-4 Thomson Effect 9
2-2-5 熱電模組功率計算 10
2-3 文獻回顧 11
2-3-1 Mg2(SiSn)晶體結構 11
2-3-2 Mg2(SiSn)熱電材料 12
2-3-3 Mg2(SiSn)微量Bi摻雜 14
2-3-4 常見接合方法 16
2-3-5 PN熱電元件結構 16
2-4 實驗動機 18
第三章、量測方式 19
3-1 量測儀器 19
3-1-1 Seebeck量測 19
3-1-2 電導率量測 21
3-1-3 密度量測 23
3-1-4 熱擴散率量測 24
3-1-5 比熱量測 25
3-1-6 熱傳導率量測 26
3-1-7 材料晶體特性分析 27
3-1-8 材料微觀分析 29
3-1-9 模組電性量測 30
第四章、實驗步驟 33
4-1 前言 33
4-2 實驗步驟流程圖 34
4-3 實驗步驟 35
4-3-1 Si(Sb)的製程 35
4-3-2 Mg2Si的製程 40
4-3-3 Mg2(SiSn)的製程 45
4-3-4 元件的製作和測試 48
4-3-4-1 元件上下橋接結構 48
4-3-4-2 元件平行並排結構 51
4-3-4-3 元件立起前後串接結構 53
4-3-5 模組的製作 57
第五章、實驗結果與討論 62
5-1 前言 62
5-2 焊料與金屬接觸的測試 63
5-2-1 WU-4焊料與金屬焊接 63
5-2-2 鋅鋁銅焊料與金屬焊接 64
5-3 高鎂矽金屬接觸測試結果 64
5-4 熱電模組實驗結果討論 67
5-4-1 模組上下橋接的結構 67
5-4-2 模組平行並排的結構 69
5-4-3 模組立起前後串接的結構 71
5-4-4 大型熱電模組電性分析 74
5-5 Mg2(SiSn)試片熱傳導率計算 86
5-6 Mg2(SiSn)試片ZT值計算 87
第六章、結論與未來展望 88
參考文獻 90
參考文獻 [1] Muchuweni, E., and Mombeshora, E.T.: ‘Enhanced thermoelectric performance by single-walled carbon nanotube composites for thermoelectric generators: A review’, Applied Surface Science Advances, 2023, 13
[2] Terasaki, E.T.: ‘Introduction to thermoelectricity’, in Sorrell, C.C., Sugihara, S., and Nowotny, J. (Eds.): ‘Materials for Energy Conversion Devices’ (Woodhead Publishing, 2005), pp. 339-357
[3] Tritt, T.M.: ‘Thermoelectric Materials: Principles, Structure, Properties, and Applications’.: ‘Book Thermoelectric Materials: Principles, Structure, Properties, and Applications’ (2002, edn.)
[4] Das, A.K.: ‘A Review on Thermoelectric Effects and Phenomenon’
[5] Wei, J., Yang, L., Ma, Z., Song, P., Zhang, M., Ma, J., Yang, F., and Wang, X.: ‘Review of current high-ZT thermoelectric materials’, Journal of Materials Science, 2020, 55, (27), pp. 12642-12704
[6] Heremans, J.P., Dresselhaus, M.S., Bell, L.E., and Morelli, D.T.: ‘When thermoelectrics reached the nanoscale’, Nature Nanotechnology, 2013, 8, (7), pp. 471-473
[7] He, J., and Tritt, T.M.: ‘Advances in thermoelectric materials research: Looking back and moving forward’, Science, 2017, 357, (6358)
[8] Jouhara, H., Żabnieńska-Góra, A., Khordehgah, N., Doraghi, Q., Ahmad, L., Norman, L., Axcell, B., Wrobel, L., and Dai, S.: ‘Thermoelectric generator (TEG) technologies and applications’, International Journal of Thermofluids, 2021, 9
[9] Snyder, G.J., and Snyder, A.H.: ‘Figure of merit ZT of a thermoelectric device defined from materials properties’, Energy & Environmental Science, 2017, 10, (11), pp. 2280-2283
[10] Champier, D.: ‘Thermoelectric generators: A review of applications’, Energy Conversion and Management, 2017, 140, pp. 167-181
[11] https://www.allaboutcircuits.com/technical-articles/thermocouple-principles-seebeck-effect-seebeck-voltage-seebeck-coefficients/, accessed June 13 2024
[12] Wiegand, S.: ‘Introduction to thermal gradient related effects’, 2015
[13] https://thermoelectricsolutions.com/how-thermoelectric-cooling-works/, accessed 14 2024
[14] Tada, S., Nagai, T., Shioda, N., Fujiu, H., Kumagai, S., Abe, H., Isoda, Y., and Shinohara, Y.: ‘Development of Mg 2 (SiSn) Thermoelectric Material for Automobile’, SAE International Journal of Passenger Cars-Electronic and Electrical Systems, 2015, 8, (2015-01-1695), pp. 442-448
[15] Shi, G., and Kioupakis, E.: ‘Relativistic quasiparticle band structures of Mg2Si, Mg2Ge, and Mg2Sn: Consistent parameterization and prediction of Seebeck coefficients’, Journal of Applied Physics, 2018, 123, (8)
[16] Zaitsev, V.K., Fedorov, M.I., Gurieva, E.A., Eremin, I.S., Konstantinov, P.P., Samunin, A.Y., and Vedernikov, M.V.: ‘Highly effective Mg2Si1-XSnX thermoelectrics’, Physical Review B, 2006, 74, (4)
[17] Zhang, X., Liu, H., Lu, Q., Zhang, J., and Zhang, F.: ‘Enhanced thermoelectric performance of Mg2Si0.4Sn0.6 solid solutions by in nanostructures and minute Bi-doping’, Applied Physics Letters, 2013, 103
[18] Srinivasan, B.: ‘Novel Chalcogenide based Glasses, Ceramics and Polycrystalline Materials for Thermoelectric Application’, 2018
[19] https://www.scincotaiwan.tw/zh-cht/TechnicalSupport_Detail-81.html, accessed June 17 2024
[20] https://chem.libretexts.org/Bookshelves/Analytical_Chemistry/Supplemental_Modules_(Analytical_Chemistry)/Instrumentation_and_Analysis/Diffraction_Scattering_Techniques/Powder_X-ray_Diffraction, accessed June 17 2024
[21] https://www.technologynetworks.com/analysis/articles/sem-vs-tem-331262, accessed June 18 2024
[22] Fujimoto, S., Nagase, K., Ohshima, H., Murata, M., Yamamoto, A., and Lee, C.H.: ‘Thermoelectric Module of SiGe Bulk Alloys Forming p‐n Junction at the Hot Side’, Advanced Engineering Materials, 2022, 24, (8)
[23] Fabián-Mijangos, A., Min, G., and Alvarez-Quintana, J.: ‘Enhanced performance thermoelectric module having asymmetrical legs’, Energy Conversion and Management, 2017, 148, pp. 1372-1381
指導教授 辛正倫(Cheng-Lun Hsin) 審核日期 2024-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明