參考文獻 |
[1] Muchuweni, E., and Mombeshora, E.T.: ‘Enhanced thermoelectric performance by single-walled carbon nanotube composites for thermoelectric generators: A review’, Applied Surface Science Advances, 2023, 13
[2] Terasaki, E.T.: ‘Introduction to thermoelectricity’, in Sorrell, C.C., Sugihara, S., and Nowotny, J. (Eds.): ‘Materials for Energy Conversion Devices’ (Woodhead Publishing, 2005), pp. 339-357
[3] Tritt, T.M.: ‘Thermoelectric Materials: Principles, Structure, Properties, and Applications’.: ‘Book Thermoelectric Materials: Principles, Structure, Properties, and Applications’ (2002, edn.)
[4] Das, A.K.: ‘A Review on Thermoelectric Effects and Phenomenon’
[5] Wei, J., Yang, L., Ma, Z., Song, P., Zhang, M., Ma, J., Yang, F., and Wang, X.: ‘Review of current high-ZT thermoelectric materials’, Journal of Materials Science, 2020, 55, (27), pp. 12642-12704
[6] Heremans, J.P., Dresselhaus, M.S., Bell, L.E., and Morelli, D.T.: ‘When thermoelectrics reached the nanoscale’, Nature Nanotechnology, 2013, 8, (7), pp. 471-473
[7] He, J., and Tritt, T.M.: ‘Advances in thermoelectric materials research: Looking back and moving forward’, Science, 2017, 357, (6358)
[8] Jouhara, H., Żabnieńska-Góra, A., Khordehgah, N., Doraghi, Q., Ahmad, L., Norman, L., Axcell, B., Wrobel, L., and Dai, S.: ‘Thermoelectric generator (TEG) technologies and applications’, International Journal of Thermofluids, 2021, 9
[9] Snyder, G.J., and Snyder, A.H.: ‘Figure of merit ZT of a thermoelectric device defined from materials properties’, Energy & Environmental Science, 2017, 10, (11), pp. 2280-2283
[10] Champier, D.: ‘Thermoelectric generators: A review of applications’, Energy Conversion and Management, 2017, 140, pp. 167-181
[11] https://www.allaboutcircuits.com/technical-articles/thermocouple-principles-seebeck-effect-seebeck-voltage-seebeck-coefficients/, accessed June 13 2024
[12] Wiegand, S.: ‘Introduction to thermal gradient related effects’, 2015
[13] https://thermoelectricsolutions.com/how-thermoelectric-cooling-works/, accessed 14 2024
[14] Tada, S., Nagai, T., Shioda, N., Fujiu, H., Kumagai, S., Abe, H., Isoda, Y., and Shinohara, Y.: ‘Development of Mg 2 (SiSn) Thermoelectric Material for Automobile’, SAE International Journal of Passenger Cars-Electronic and Electrical Systems, 2015, 8, (2015-01-1695), pp. 442-448
[15] Shi, G., and Kioupakis, E.: ‘Relativistic quasiparticle band structures of Mg2Si, Mg2Ge, and Mg2Sn: Consistent parameterization and prediction of Seebeck coefficients’, Journal of Applied Physics, 2018, 123, (8)
[16] Zaitsev, V.K., Fedorov, M.I., Gurieva, E.A., Eremin, I.S., Konstantinov, P.P., Samunin, A.Y., and Vedernikov, M.V.: ‘Highly effective Mg2Si1-XSnX thermoelectrics’, Physical Review B, 2006, 74, (4)
[17] Zhang, X., Liu, H., Lu, Q., Zhang, J., and Zhang, F.: ‘Enhanced thermoelectric performance of Mg2Si0.4Sn0.6 solid solutions by in nanostructures and minute Bi-doping’, Applied Physics Letters, 2013, 103
[18] Srinivasan, B.: ‘Novel Chalcogenide based Glasses, Ceramics and Polycrystalline Materials for Thermoelectric Application’, 2018
[19] https://www.scincotaiwan.tw/zh-cht/TechnicalSupport_Detail-81.html, accessed June 17 2024
[20] https://chem.libretexts.org/Bookshelves/Analytical_Chemistry/Supplemental_Modules_(Analytical_Chemistry)/Instrumentation_and_Analysis/Diffraction_Scattering_Techniques/Powder_X-ray_Diffraction, accessed June 17 2024
[21] https://www.technologynetworks.com/analysis/articles/sem-vs-tem-331262, accessed June 18 2024
[22] Fujimoto, S., Nagase, K., Ohshima, H., Murata, M., Yamamoto, A., and Lee, C.H.: ‘Thermoelectric Module of SiGe Bulk Alloys Forming p‐n Junction at the Hot Side’, Advanced Engineering Materials, 2022, 24, (8)
[23] Fabián-Mijangos, A., Min, G., and Alvarez-Quintana, J.: ‘Enhanced performance thermoelectric module having asymmetrical legs’, Energy Conversion and Management, 2017, 148, pp. 1372-1381 |