博碩士論文 111521073 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:54 、訪客IP:3.128.172.154
姓名 謝丞哲(Cheng-Che Hsieh)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 全氧化鋅熱電元件接觸金屬開發及模組製作
(Development of Zinc Oxide Thermoelectric Devices Contact Metal and Module Fabrication)
相關論文
★ 以熱熔異質磊晶成長法製造之鍺光偵測器★ 在SOI基板上以快速熱熔法製造高品質鍺及近紅外線光偵測元件之研製
★ 鉭錳合金及銅鍺化合物應用於積體電路後段製程中銅導線之研究★ 快速熱熔磊晶成長法製造側向PIN(Ge-Ge-Si)光偵測器
★ 二維薄膜及三維塊材Seebeck係數量測★ 塊材、薄膜與奈米線之熱導係數量測方法探討
★ 以快速熱熔異質磊晶成長法製作鍺矽累增型光偵測器★ 以快速熱熔融磊晶成長法製作 鍺錫合金PIN型光偵測器
★ 利用火花電漿燒結法製備以矽為基底之奈米材料於熱電特性上之應用研究★ P型金屬氧化物薄膜的製備應用於軟性電子
★ 金屬氧化物製備應用於軟性電子元件★ 超導材料釔鋇銅氧化物熱電特性量測分析
★ 鎂矽錫合金熱電特性研究及應用★ 矽基熱電模組開發及特性研究
★ P型金屬氧化物與硫化物之研究★ 物聯網之熱感測器應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 全球暖化議題備受各國關注,環境友善的再生能源成為眾人追尋的目標。隨著科技發展,熱電材料以其將熱能轉換成電能的特性,成為能源轉型的重要選擇之一。熱電材料利用材料兩端的溫度差發電,可將廢熱做二次利用,提高能源使用效率,廣泛應用於汽車、穿戴式裝置、航太科技等領域。
不同熱電材料具有差異化的特性。氧化物半導體因其極佳的熱穩定性、無毒、成本低廉、環保且製備相對容易等優點,成為研究常用的熱電材料。透過研究單一試片的電性表現,可選擇最佳摻雜比例。再將N型及P型塊材串接組成熱電元件及模組,使塊材產生的輸出電壓能夠疊加,產生足夠的電能。
本論文以氧化鋅為基礎,研究其熱電效能。透過分別摻雜2at%的Al2O3及CeO2,製備出N型氧化鋅材料。P型材料則透過摻雜0.1536at%的ZnP製備而成。以鋁金屬片作為N型試片與P型試片間的接觸金屬,並使用導電銀膠以及WU-4焊料焊接製作出熱電模組,進行後續的輸出電壓、短路電流、輸出功率量測。
摘要(英) Global warming has been widely discussed by various countries, and environmentally friendly renewable energy has become a common goal. With the advancement of technology, thermoelectric materials have emerged as one of the best options for energy transition. These materials can convert heat into electricity by utilizing the temperature difference between the two ends of the material, enabling the secondary use of waste heat and improving energy efficiency. This makes them suitable for applications in automobiles, wearable devices, aerospace technology, and more.
The characteristics exhibited by each type of thermoelectric material vary. Oxide semiconductors are commonly used in research due to their excellent thermal stability, non-toxicity, low cost, environmental friendliness, and relatively easy fabrication. By studying the electrical performance of individual samples, we can determine the optimal doping ratios. By connecting N-type and P-type bulk materials in series, we can create thermoelectric devices and modules that allow the output voltage generated by the bulk materials to be combined, producing sufficient electrical power.
This study investigates zinc oxide (ZnO) thermoelectric materials. By doping ZnO with 2 at% Al2O3 and CeO2, N-type materials were created, while the P-type material was obtained by doping ZnO with 0.1536 at% ZnP. Aluminum metal sheets were used as the contact metal between the N-type and P-type samples. Conductive silver paste and WU-4 solder were employed to fabricate the thermoelectric module, followed by subsequent measurements of output voltage, short-circuit current, and output power.
關鍵字(中) ★ 熱電材料
★ 氧化鋅
★ 熱電模組
關鍵字(英) ★ Thermoelectric
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 viii
表目錄 xii
第一章 緒論 1
1-1 前言 1
1-2氧化鋅(ZnO)介紹 2
1-2-1 氧化鋅基本性質 2
1-2-2 N型摻雜之氧化鋅 3
1-2-3 P型摻雜之氧化鋅 4
1-3 熱電材料分類 5
1-4 實驗介紹 6
第二章 熱電基礎與理論 7
2-1 熱電效應 7
2-1-1 席貝克效應(Seebeck effect) 7
2-1-2 帕爾帖效應(Peltier effect) 8
2-1-3 湯姆森效應(Thomson effect) 9
2-2 熱導率(Thermal Conductivity) 10
2-3 熱電優值(Thermoelectric Figure of Merit) 11
2-4 熱電轉換效率 12
2-5 熱電材料應用 13
第三章 實驗步驟與儀器 14
3-1 研究動機 14
3-2實驗步驟 15
3-3粉末製備方法 16
3-3-1 奈米級氧化鋅(ZnO)粉末製備 16
3-3-2 磷化鋅(ZnP)製備 17
3-3-3奈米級三氧化二鋁(Al2O3)粉末製備 19
3-3-4 N-type及P-type氧化鋅粉末製備 20
3-3-5 聚乙烯醇溶液(Binder)製備 21
3-4模組開發流程 22
3-4-1 N-type及P-type氧化鋅純試片製作 22
3-4-2 試片接觸金屬測試 23
3-4-3 元件開發流程圖 24
3-4-4 熱電模組製作 25
3-5 量測儀器與方法 26
3-5-1 電導率量測 26
3-5-2 席貝克係數量測 28
3-5-3 密度量測 29
3-5-4 熱擴散量測 30
3-5-5 比熱量測 31
3-5-6 掃描式電子顯微鏡 32
3-5-7 X射線粉末繞射儀 33
3-5-8 熱電模組電性量測 34
第四章 實驗結果分析與討論 36
4-1 實驗概述 36
4-2 P型摻雜氧化鋅粉末比例優化 37
4-2-1 測試增加ZnP摻雜比例 37
4-2-2 測試減少ZnP摻雜比例 39
4-3 接觸金屬測試 41
4-3-1 測試Mo片/Ta片/Ni片/W片/Ti片 42
4-3-2 測試Ag片/Al片/Cu片 43
4-3-3 測試雲母片/石英片 44
4-3-4 接觸金屬量測及優化串接方式 45
4-4 試片冷壓方式測試 48
4-4-1 測試P型及N型粉末共同冷壓 48
4-4-2 測試P型及N型粉末分開冷壓 49
4-5 試片及元件退火測試 51
4-5-1 單次退火試片及接觸金屬 51
4-5-2 接觸金屬二次退火 52
4-5-2-1 700°C退火測試 52
4-5-2-2 1000°C退火測試 53
4-6 全氧化鋅熱電元件量測 55
4-7 全氧化鋅熱電模組量測 59
4-7-1熱電模組之焊接方式 59
4-7-2熱電模組串接 60
4-7-2-1 4對PN 60
4-7-2-2 8對PN 62
4-7-2-3 16對PN 64
4-7-2-4 32對PN 66
4-7-3完整熱電模組 68
第五章 結論與未來展望 72
參考文獻 73
參考文獻 [1] https://www.scimonth.com.tw/archives/8881
將廢熱轉換為電能 提升能源使用率的熱電材料
[2] https://www.matek.com/zh-TW/Tech_Article/detail/specialist-column/all/202212-IAR
優化熱電材料的方法揭密!熱電元件解說大全|國立清華大學 陳信文教授、國立陽明交通大學 吳欣潔副教授
[3] https://www.scimonth.com.tw/archives/1963
穿戴裝置的未來新能源—可撓式熱電晶片
[4] Naif H. Al-Hardan, Muhammad Azmi Abdul Hamid, Roslinda Shamsudin and Norinsan Kamil Othman.(2016). "Ultraviolet Sensors Based on Two-Dimensional Zinc Oxide Structures".
[5] C. Klingshirn.(2007)."ZnO: Material, Physics and Applications," ChemPhysChem, vol. 8, no. 6, pp. 782-803. doi: https://doi.org/10.1002/cphc.200700002
[6] Janotti, Anderson and Chris G. Van de Walle. (2009). “Fundamentals of zinc oxide as a semiconductor.” Reports on Progress in Physics 72: 126501.
[7] B. J. Jin, S. H. Bae, S. Y. Lee, and S. Im, Mater. (2000). Sci. Eng. B 71, 301.
[8] V. A. Coleman and C. Jagadish. (2006). “Zinc Oxide Bulk, Thin Films and Nanostructures processing, Properties and Applications”.pp.1-4, ISBN : 978-0-08-044722-3
[9] Ohtaki M, Tsubota T, Eguchi K, et al. (1996). High-temperature thermo-electric properties of (Zn1-xAlx)O. Jpn Appl Phys, 79(3):1816.
[10] S. Jantrasee1, P. Moontragoon, S. Pinitsoontorn. (2016)."Thermoelectric properties of Al-doped ZnO: experiment and simulation".
[11] Shirouzu K, Ohkusa T, Hotta M, et al. (2007) .Distribution and solubility limit of Al in Al2O3doped ZnO sintered body. J Ceram SocJapan, 115: 254
[12] H. Colak. (2016). "Synthesis and characterization of CeO2-doped ZnO".
[13] B. J. Jin, S. H. Bae, S. Y. Lee, and S. Im. (2000). "Effects of native defects on optical and electrical properties of ZnO prepared by pulsed laser deposition," Materials Science and Engineering: B, vol. 71, no. 1, pp. 301-305, 2000/02/14/, doi: https://doi.org/10.1016/S0921-5107(99)00395-5.
[14] Tsukazaki, Atsushi ; Ohtomo, Akira ; Onuma, Takeyoshi et al. (2005). / Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO. In: Nature Materials. pp. 42-45. ; Vol. 4, No. 1.
[15] W. W. Liu, C. L. Liu, X. B. Chen, J. H. Lu, H. X. Chen, Z. Z Miao. (2020). Physics Letters A, 384(8) 126172.
[16] Tetsuya Yamamoto and Hiroshi Katayama-Yoshida. (1999). Jpn. J. Appl. Phys. 38 L166 DOI 10.1143/JJAP.38.L166
[17] Kyoung-Kook Kim, Hyun-Sik Kim,et al.(2003). Realization of p-type ZnO thin films via phosphorus doping and thermal activation of the dopant. Appl. Phys. Lett. 7 July 2003; 83 (1): pp.63–65. https://doi.org/10.1063/1.1591064
[18] Look, D. C. & Claflin, B. (2004). P-type doping and devices based on ZnO. Physica Status Solidi (b), 241(3), pp.624–630. doi:10.1002/pssb.200304271
[19] Tritt, T.M. (2006). Thermoelectric Materials, Phenomena, and Applications: A Bird′s Eye View. MRS Bulletin. 31. pp.188 - 198. 10.1557/mrs2006.44.
[20] Goldsmid, H. J. (2010). Introduction to Thermoelectricity. Springer Series in Materials Science. pp.1-3 doi:10.1007/978-3-642-00716-3
[21] Zhu, X., Yu, Y., & Li, F. (2019). A review on thermoelectric energy harvesting from asphalt pavement: Configuration, performance and future. Construction and Building Materials, 228, 116818. doi:10.1016/j.conbuildmat.2019.116818
[22] Kodeeswaran, S., Ramkumar, T., & Ganesh, R. J. (2017). Precise temperature control using reverse seebeck effect. 2017 International Conference on Power and Embedded Drive Control (ICPEDC). doi:10.1109/icpedc.2017.8081122
[23] H.S. Lee. (2016) "Thermoelectrics: Design and Materials",. ISBN: 978-1-118-84895-1
[24] Jean Baptiste Joseph Fourier, “Théorie Analytique de la Chaleur”,(2009).ISBN: 978-1-108-00180-9
[25] Ioffe, A.F. (1957). Semiconductor Thermoelements, and Thermoelectric Cooling, 1st ed.; Info-search Ltd.: London, pp.69,107.UK.
[26] Jones, William; March, Norman H. (1985). Theoretical Solid State Physics. Courier Dover Publications. ISBN 978-0-486-65016-6.
[27] Angrist, Stanley W.(1976).” Direct energy conversion”, Boston : Allyn and Bacon.pp.188-194. ISBN: 978-0-205-05581-4
[28]陳洋元,陳正龍,2020 ‘熱電於再生能源之運用’, 中央研究院物理研究所
[29] https://www.chingyu.com.tw/flexible-thermoelectric-power-generation-device-031900238.html 可撓式溫差發電裝置,晶宇銘版工業股份有限公司
[30] 天地能源暨溫控器材行-熱電致冷晶片介紹https://www.tande.com.tw/te-index.htm
[31] Shinichi Fujimoto, Kazuo Nagase,et al.(2022) “Thermoelectric Module of SiGe Bulk Alloys Forming p-n Junction at the Hot Side”, https://doi.org/10.1002/adem.202101520
[32]劉修豪,"金屬氧化物製備應用於軟性電子元件", 國立中央大學, 電機工程學系, 碩士論文, 2016.
[33]曾思翰, "金屬氧化物熱電材料製程開發之研究", 國立中央大學, 電機工程學系, 碩士論文, 2021.
[34]林育賢, "全氧化鋅熱電材料開發及元件製作", 國立中央大學, 電機工程學系, 碩士論文, 2022.
[35]呂旻哲, "全氧化鋅熱電材料開發及模組製作", 國立中央大學, 電機工程學系, 碩士論文, 2023.
[36] https://www.hsiung-yu.com/quality_detail_89.htm 雄宇事業有限公司,密度比重計
[37] https://www.acttr.com/tw/tw-faq/tw-faq-thermal-analysis/190-tw-faq-dsc-applications.html DSC差示掃描量熱儀的應用領域
[38] https://www.kctech.com.tw/what-is-sem/ 淺談掃描式電子顯微鏡技術
[39] https://www.tisamax.com/article/view/244/ XRD專業定量分析軟體
[40] 王進威,2021,”中子粉末繞射簡介及其應用”,物理雙月刊
指導教授 辛正倫(Cheng-Lun Hsin) 審核日期 2024-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明