以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:81 、訪客IP:3.148.144.139
姓名 周得揚(Te-Yang Chou) 查詢紙本館藏 畢業系所 網路學習科技研究所 論文名稱 開放性問題的設計對學生數學自我效能、 興趣與焦慮影響之初探
(Exploring and Designing Open-Ended Questions: Their Impact on Students′ Mathematical Self-Efficacy, Interest, and Anxiety)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] 至系統瀏覽論文 (2026-8-1以後開放) 摘要(中) 數學是基本能力評估的重要項目,也是國民教育中不可或缺的基礎課程之一。在當今的時代,數學的學習不再是為了應對考試,更是培養學生的邏輯思維、問題解決能力以及創新潛能的重要途徑,因此,提升學生學習數學的興趣、增強學生的自我效能、降低學生的數學焦慮感以及建立自主學習習慣是教學的重要目標。
本研究採用設計研究方法,主要專注於教材與教學活動的創新設計。研究對象為桃園市某國小的五、六年級學生共 23 位及數學教師 1 位。我們使用數學興趣問卷、數學焦慮問卷和數學自我效能問卷進行前後測,採用描述性統計及魏克生符號檢定來分析結果,並輔以訪談進行討論。
在教學設計方面,我們引入開放性數學問題思考模式,並安排學生進行登台活動。教材設計結合開放性問題的理念,著重於解題的思考過程而非單一答案。我們在問題中設置多個啟發性問題點,引導學生多角度思考,激發探究欲望,培養發現問題、分析問題和解決問題的能力。同時,我們採用小組合作的方式解題,鼓勵學生從不同角度思考,產生多種可能的答案。
研究結果顯示,開放性問題融入課堂教學活動對於數學興趣、數學自我效能以及數學焦慮面向均無顯著影響。然而,本研究強調開放性問題在數學教育中的重要性,它不僅能激發學生的創造力、探究精神和批判性思考能力,更有助於提高他們的數學自我效能感。結合毅力數學的理念,我們認為這種教學方法有潛力培養學生持續面對挑戰的能力,提升他們對數學學習的長期興趣和投入。本研究為開放性問題在數學教育中的應用提供了新的視角,為未來相關研究和教學實踐奠定基礎,彰顯了其在創新數學教育方面的價值和貢獻。摘要(英) Mathematics is a crucial component of basic ability assessment and an essential foundational course in national education. In today′s era, learning mathematics is no longer just about passing exams, but an important path to cultivate students′ logical thinking, problem-solving abilities, and innovative potential. Therefore, enhancing students′ interest in learning mathematics, strengthening their self-efficacy, reducing math anxiety, and establishing self-directed learning habits are important teaching objectives.
This study adopts a design research methodology, focusing primarily on innovative design of teaching materials and educational activities. The research subjects include 23 fifth and sixthgrade students and one mathematics teacher from an elementary school in Taoyuan City. We used mathematics interest questionnaires, math anxiety questionnaires, and math self-efficacy questionnaires for pre- and post-tests. Descriptive statistics and Wilcoxon signed-rank test were used to analyze the results, supplemented by interviews for discussion.
In terms of instructional design, we introduced an open-ended mathematical problemthinking model and arranged for students to participate in presentation activities. The
curriculum design incorporates the concept of open-ended problems, emphasizing the thought process of problem-solving rather than single answers. We set multiple thought-provoking points in the problems, guiding students to think from multiple angles, stimulating their desire to explore, and cultivating their abilities to discover, analyze, and solve problems. Simultaneously, we adopted a group collaboration approach to problem-solving, encouraging
students to think from different perspectives and generate multiple possible answers.
Research results show that integrating open-ended problems into classroom teaching activities had no significant impact on mathematics interest, math self-efficacy, or math anxiety. However, this study emphasizes the importance of open-ended problems in mathematics education. They not only stimulate students′ creativity, spirit of inquiry, and critical thinking skills but also help to improve their math self-efficacy. Combining the concept of grit mathematics, we believe this teaching method has the potential to cultivate students′ ability to persistently face challenges, enhancing their long-term interest and engagement in mathematics
learning. This study provides a new perspective on the application of open-ended problems in mathematics education, laying a foundation for future related research and teaching practices, and highlighting its value and contribution to innovative mathematics education.關鍵字(中) ★ 開放性問題
★ 數學興趣
★ 自我效能
★ 數學焦慮關鍵字(英) ★ Open-ended question
★ Mathematical interest
★ Mathematical self-efficacy
★ Mathematical anxiety論文目次 目錄
中文摘要..................................................................................................................................... i
Abstract ...................................................................................................................................... ii
致謝........................................................................................................................................... iv
目錄............................................................................................................................................ v
圖目錄..................................................................................................................................... viii
表目錄....................................................................................................................................... ix
第一章 緒論..............................................................................................................................1
1-1 研究背景與動機...............................................................................................................1
1-2 研究目的...........................................................................................................................3
1-3 研究問題...........................................................................................................................3
1-4 名詞解釋...........................................................................................................................3
1-4-1 毅力數學......................................................................................................................3
1-4-2 富效失敗(Productive Failure)......................................................................................4
1-4-3 富效掙扎(Productive struggle)....................................................................................5
第二章 文獻探討......................................................................................................................6
2-1 數學興趣(Mathematical interest) ....................................................................................6
2-2 數學焦慮(Mathematical anxiety).....................................................................................7
2-3 數學自我效能(Mathematical self-efficacy) .....................................................................9
2-4 開放性任務(Open-ended Question) ..............................................................................10
2-5 成長型思維(Growth mindset)........................................................................................12
2-6 興趣驅動創造者理論(Interest-Creator Driven Theory) ................................................14
第三章 學習活動與教材設計................................................................................................16
3-1 以趣創環(IDC Loop)為基礎設計學習活動....................................................................16
3-2 學習活動流程設計.........................................................................................................16
3-2-1 成長型思維模式培養................................................................................................17
3-2-2 給定題目....................................................................................................................17
3-2-3 小組解題....................................................................................................................18
3-2-4 登台活動....................................................................................................................18
3-2-5 教師講解....................................................................................................................19
3-3 教材設計.........................................................................................................................20
vi
3-3-1 教材設計動機............................................................................................................20
3-3-2 教材設計流程............................................................................................................20
3-4 開放性問題設計內容與說明.........................................................................................21
3-5 教材設計參考資料.........................................................................................................25
第四章 研究方法....................................................................................................................26
4-1 研究設計.........................................................................................................................26
4-2 研究對象.........................................................................................................................26
4-3 研究工具.........................................................................................................................26
4-3-1 IDC 數學興趣問卷......................................................................................................27
4-3-2 數學自我效能問卷....................................................................................................29
4-3-3 數學焦慮問卷............................................................................................................31
4-4 訪談內容.........................................................................................................................32
4-5 實驗流程與時間.............................................................................................................33
4-6 資料收集與分析.............................................................................................................34
4-6-1 描述性統計................................................................................................................35
4-6-2 信度分析....................................................................................................................35
4-6-3 魏克生符號檢定(Wilcoxon sign rank).......................................................................37
第五章 研究結果....................................................................................................................38
5-1 IDC 數學興趣問卷 ...........................................................................................................38
5-1-1 IDC 數學興趣問卷整體..............................................................................................38
5-1-2 引趣(Trigging) ............................................................................................................39
5-1-3 入趣(Immersion)........................................................................................................40
5-1-4 延趣(Extending).........................................................................................................40
5-1-5 個人興趣發展(Interest Development)......................................................................41
5-2 數學自我效能問卷.........................................................................................................43
5-2-1 數學自我效能問卷整體............................................................................................43
5-2-2 自我掌握面向............................................................................................................44
5-2-3 替代經驗面向............................................................................................................44
5-2-4 社會勸服面向............................................................................................................45
5-2-5 心理情緒狀態面向....................................................................................................46
5-3 數學焦慮整體問卷.........................................................................................................47
5-3-1 對明確的數字情境的數學焦慮面向........................................................................48
vii
5-3-2 對一般數字情境的數學焦慮面向............................................................................49
5-4 訪談結果統整.................................................................................................................51
5-4-1 學生訪談結果............................................................................................................51
5-4-2 教師訪談結果............................................................................................................55
第六章 討論與未來展望........................................................................................................59
6-1 討論與貢獻.....................................................................................................................59
6-1-1 開放性問題融入課堂活動是否能幫助學習者提升數學學習興趣?....................59
6-1-2 開放性問題融入課堂活動是否幫助學習者提升數學自我效能感?....................59
6-1-3 學習者對開放性問題融入課堂活動觀感與建議為何?........................................60
6-1-4 教師對開放性問題融入課堂活動觀感與建議為何?............................................61
6-2 研究限制.........................................................................................................................62
6-3 未來展望.........................................................................................................................63
參考文獻..................................................................................................................................67
中文文獻..............................................................................................................................67
英文文獻..............................................................................................................................67參考文獻 李應儒(2023)。透過合作解題與教中學影片創製增進學生數學自我效能與興趣〔未出版之碩士論文〕。國立中央大學網路學習科技研究所。
楊承祐(2023)。發展數學成就目標系統並初步評估對增進興趣與自我效能的成效。〔未出版之碩士論文〕。國立中央大學網路學習科技研究所。
戴再平(2002)。開放題——數學教學的新模式。
Akin, A., & Kurbanoglu, I. N. (2011). The relationships between math anxiety, math attitudes, and self-efficacy: A structural equation model. Studia Psychologica, 53(3), 263.
Aziza, M. (2017). The use of open-ended question pictures in the mathematics classroom. New
Trends and Issues Proceedings on Humanities and Social Sciences, 4(9), 1-9.
Badger, E., & Thomas, B. (2019). Open-ended questions in reading. Practical assessment, research, and evaluation, 3(1), 4.
Baker, K., Jessup, N. A., Jacobs, V. R., Empson, S. B., & Case, J. (2020). Productive struggle in action. Mathematics Teacher: Learning and Teaching PK-12, 113(5), 361-367.
Bandura, A. (1977). Self-efficacy: toward a unifying theory of behavioral change. Psychological review, 84(2), 191.
Barron, B. (2000). Achieving coordination in collaborative problem-solving groups. The journal of the learning sciences, 9(4), 403-436.
Becker, J. P., & Shimada, S. (1997). The Open-Ended Approach: A New Proposal for Teaching Mathematics. National Council of Teachers of Mathematics, 1906 Association Drive, Reston, VA 20191-1593.
Beilock, S. L., & Willingham, D. T. (2014). Math anxiety: Can teachers help students reduce it? ask the cognitive scientist. American educator, 38(2), 28.
Bhatta, H. R. (2016). Mathematics anxiety: causes and ways of minimization at basic level students (Doctoral dissertation, Department of Mathematics Education).
Boaler, J., & Staples, M. (2008). Creating mathematical futures through an equitable teaching approach: The case of Railside School. Teachers College Record, 110(3), 608-645.
Boaler, J., Chen, L., Williams, C., & Cordero, M. (2016). Seeing as understanding: The importance of visual mathematics for our brain and learning. Journal of Applied & Computational Mathematics, 5(5), 1-6.
Boaler, J. (2019). Developing Mathematical Mindsets: The Need to Interact with Numbers Flexibly and Conceptually. American educator, 42(4), 28.
Boaler, J., Dieckmann, J. A., LaMar, T., Leshin, M.,Selbach-Allen, M., & Pérez-Núñez, G. (2021, December). The transformative impact of a mathematical mindset experience taught at scale. In Frontiers in Education (Vol. 6, p. 784393). Frontiers.
Boaler, J. (2022). Mathematical mindsets: Unleashing students′ potential through creative mathematics, inspiring messages and innovative teaching. John Wiley & Sons.
Boaler, J., Brown, K., LaMar, T., Leshin, M., & Selbach-Allen, M. (2022). Infusing mindset through mathematical problem solving and collaboration: Studying the impact of a short college intervention. Education Sciences, 12(10), 694.
Çakır, H., & Cengiz, Ö. (2016). The use of open ended versus closed ended questions in Turkish classrooms. Open Journal of Modern Linguistics, 6(2), 60-70.
Chan, T. W., Looi, C. K., Chen, W., Wong, L. H., Chang, B., Liao, C. C., ... & Ogata, H. (2018). Interest-driven creator theory: Towards a theory of learning design for Asia in the twentyfirst century. Journal of Computers in Education, 5, 435-461.
Chaiyawan, S., & Katwibun, D. (2014). An analysis of students’ critical thinking in a mathematics classroom implementing an open approach. Journal of Research Methodology, 27(3), 319-339.
Cooney, T. J., Sanchez, W. B., Leatham, K., & Mewborn, D. S. (2004). Open-ended assessment in math: A searchable collection of 450+ questions.
Dada, A. A. (2016). IMPACT OF TEACHERS’QUALIFICATION AND EXPERIENCE ON THE PERFORMANCE OF STUDENTS IN COLLEGES OF EDUCATION IN KADUNA STATE, NIGERIA. The Online Journal of Quality in Higher Education, 3(2), 52.
Deslauriers, L., Schelew, E., & Wieman, C. (2011). Improved learning in a large-enrollment physics class. science, 332(6031), 862-864.
Diez-Palomar, J., Chan, M. C. E., Clarke, D., & Padros, M. (2021). How does dialogical talk promote student learning during small group work? An exploratory study. Learning, Culture and Social Interaction, 30, 100540.
Dweck, C.S. (1999) Self-theories: Their Role in Motivation, Personality, and Development. Philadelphia: Psychology Press
Dweck, C. S. (2006). Mindset: The new psychology of success. Random house.
Dweck, C. S. (2008). Brainology: Transforming students’ motivation to learn. Independent school, 67(2), 110-119.
Finkel, D. L. (2000). Teaching with your mouth shut. Education Review.
Ghefaili, A. (2003). Cognitive apprenticeship, technology, and the contextualization of learning environments. Journal of Educational Computing, Design & Online Learning, 4(1), 1-27.
Grigg, S., Perera, H. N., McIlveen, P., & Svetleff, Z. (2018). Relations among math self efficacy, interest, intentions, and achievement: A social cognitive perspective. Contemporary Educational Psychology, 53, 73-86.
Gutman, L. M. (2006). How student and parent goal orientations and classroom goal structures influence the math achievement of African Americans during the high school transition. Contemporary Educational Psychology, 31(1), 44-63.
Henningsen, M., & Stein, M. K. (1997). Mathematical tasks and student cognition: Classroombased factors that support and inhibit high-level mathematical thinking and reasoning.
Journal for research in mathematics education, 28(5), 524-549.
Hidi, S., & Renninger, K. A. (2006). The four-phase model of interest development. Educational psychologist, 41(2), 111-127.
Hiebert, J., & Grouws, D. A. (2007). The effects of classroom mathematics teaching on students’ learning. Second handbook of research on mathematics teaching and learning, 1(1), 371-404
Husain, H., Bais, B., Hussain, A., & Samad, S. A. (2012). How to construct open ended questions. Procedia-Social and Behavioral Sciences, 60, 456-462.
Jameson, M. M., & Fusco, B. R. (2014). Math anxiety, math self-concept, and math selfefficacy in adult learners compared to traditional undergraduate students. Adult Education Quarterly, 64(4), 306-322.
Kapur, M. (2008). Productive failure. Cognition and instruction, 26(3), 379-424.
Kapur, M. (2015). Learning from productive failure. Learning: Research and practice, 1(1), 51-65.
Kapur, M. (2016). Examining productive failure, productive success, unproductive failure, and unproductive success in learning. Educational Psychologist, 51(2), 289-299.
Kapur, M., & Rummel, N. (2012). Productive failure in learning from generation and invention activities. Instructional Science, 40, 645-650.
Lazarides, R., Gaspard, H., & Dicke, A. L. (2019). Dynamics of classroom motivation: Teacher enthusiasm and the development of math interest and teacher support. Learning and Instruction, 60, 126-137.
Leinwand, S. (2014). Principles to actions: Ensuring mathematical success for all. National Council of Teachers of Mathematics, Incorporated.
Masitoh, L. F., & Fitriyani, H. (2018). Improving students’ mathematics self-efficacy through problem based learning. Malikussaleh Journal of Mathematics Learning (MJML), 1(1), 26-30.
McNamara, D. S. (2001). Reading both high-coherence and low-coherence texts: Effects of text sequence and prior knowledge. Canadian Journal of Experimental Psychology/Revue
canadienne de psychologie expérimentale, 55(1), 51.
Mesler, R. M., Corbin, C. M., & Martin, B. H. (2021).Teacher mindset is associated with development of students′ growth mindset. Journal of Applied Developmental Psychology, 76, 101299.
Munroe, L. (2015). Observations of classroom practice. Using the open approach to teach mathematics in a grade six class in Japan. In Proceedings of the 7th ICMI-East Asia Regional
Conference on Mathematics Education (pp. 347-355).
Pajares, F., & Miller, M. D. (1995). Mathematics self-efficacy and mathematics performances: The need for specificity of assessment. Journal of counseling psychology, 42(2), 190.
Palinussa, A. L. (2013). Students′ critical mathematical thinking skills and character: Experiments for junior high school students through realistic mathematics education culturebased. Journal on Mathematics Education, 4(1), 75-94
Parinduri, H., Rajagukguk, W., & Minarni, A. (2018, December). The increasing of mathematical creative thinking ability and self-efficacy of junior high school students through open-ended approach. In 3rd Annual International Seminar on Transformative Education and Educational Leadership (AISTEEL 2018) (pp. 601-606). Atlantis Press.
Permatasari, D. (2016, May). The role of productive struggle to enhance learning mathematics with understanding. In Proceedings of 3rd International Conference on Research,
Implementation and Education of Mathematics and Science (pp. 95-100).
Rhew, E., Piro, J. S., Goolkasian, P., & Cosentino, P. (2018). The effects of a growth mindset on self-efficacy and motivation. Cogent Education, 5(1), 1492337.
Sardiman, A. M. (2011). The Goals of National Education and Social Studies Teaching in Indonesia (Doctoral dissertation, Aichi University of Education).
Schmidt, R. A., & Bjork, R. A. (1992). New conceptualizations of practice: Common principles in three paradigms suggest new concepts for training. Psychological science, 3(4), 207-218.
Schoenfeld, A. H. (2016). Learning to think mathematically: Problem solving, metacognition, and sense making in mathematics (Reprint). Journal of education, 196(2), 1-38.
Schwarzer, R. (1993). Measurement of perceived self-efficacy. Forschung an der Freien.
Schwarzer, R. (1997). Optimistic self-beliefs: Assessment of general perceived self-efficacy in thirteen cultures. World Psychology, 3(1), 177-190.
Seel, N. M. (2011). Encyclopedia of the Sciences of Learning. Springer Science & Business Media.
Seventika, S. Y., Sukestiyarno, Y. L., & Mariani, S. (2018, March). Critical thinking analysis
based on Facione (2015)–Angelo (1995) logical mathematics material of vocational high school (VHS). In Journal of Physics: Conference Series (Vol. 983, No. 1, p. 012067). IOP
Publishing.
Sides, J. D., & Cuevas, J. A. (2020). Effect of goal setting for motivation, self-Efficacy, and performance in Elementary mathematics. International Journal of Instruction, 13(4), 1-16.
Su, H. F. H., Ricci, F. A., & Mnatsakanian, M. (2016). Mathematical teaching strategies: Pathways to critical thinking and metacognition. International Journal of Research in Education and Science, 2(1), 190-200.
Sullivan, P., Askew, M., Cheeseman, J., Clarke, D., Mornane, A., Roche, A., & Walker, N. (2015). Supporting teachers in structuring mathematics lessons involving challenging tasks.
Journal of Mathematics Teacher Education, 18, 123-140.
Warshauer, H. K. (2015). Strategies to support productive struggle. Mathematics teaching in the middle school, 20(7), 390-393.
Warshauer, H. K. (2015). Productive struggle in middle school mathematics classrooms. Journal of Mathematics Teacher Education, 18, 375-400.
Wigfield, A., & Meece, J. L. (1988). Math anxiety in elementary and secondary school students. Journal of educational Psychology, 80(2), 210.
Winarso, W., & Hardyanti, P. (2019). Using the learning of reciprocal teaching based on open ended to improve mathematical critical thinking ability. Eduma: Mathematics Education Learning and Teaching, 8.
Yanuarto WN. (2016). Teacher Awareness of Students’ Anxiety in Math Classroom: Teachers’ Treatment vs Students’ Anxiety. Journal of Education and Learning. Vol.10 (3) pp. 235-243.
Yeh, C. Y., Cheng, H. N., Chen, Z. H., Liao, C. C., & Chan, T. W. (2019). Enhancing achievement and interest in mathematics learning through Math-Island. Research and Practice in Technology Enhanced Learning, 14, 1-19.
Yuniarti, Y., Kusumah, Y. S., Suryadi, D., & Kartasasmita, B. G. (2017). The effectiveness of open-ended problems based analytic-synthetic learning on the mathematical creative
thinking ability of pre-service elementary school teachers. International Electronic Journal of Mathematics Education, 12(3), 655-666
Zayyadi, M., Nusantara, T., Hidayanto, E., Sulandra, I. M., & Asari, A. R. (2019). Exploring prospective student teacher′s question on mathematics teaching practice. JOTSE, 9(2), 228-237.
Zetriuslita, Z., Ariawan, R., & Nufus, H. (2016). Students’ critical thinking ability: Description based on academic level and gender. Journal of Education and Practice, 7(12), 154-164.指導教授 陳德懷(Tak-Wai Chan) 審核日期 2024-7-31 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare