博碩士論文 111521132 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:38 、訪客IP:3.21.43.214
姓名 林承緯(Cheng-Wei Lin)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 用於高速數據傳輸並具有抑制空間電洞燒炙表現的單模垂直共振腔面射型雷射之開發
(The Suppression of Spatial Hole Burning Effect in Single-Mode VCSEL for High-Speed Data Transmission)
相關論文
★ 氮化鎵串接式綠光發光二極體在超高溫(200 ℃)操作的高速表現之和其內部之載子動力學★ 32Gbit/s 低耗能 850nm InAlGaAs 應變量子井面射型雷射
★ 具有大面積且在高靈敏度、低暗電流操作下具有頻寬增強效應的10 Gbit/sec平面式 InAlAs 累增崩潰光二極體★ 應用串接式技術達到超高飽和電流-頻寬乘積(7500mA-GHz,75mA,100GHz)的近彈道傳輸光偵測器
★ 利用鋅擴散方式在半絕緣(GaAs)基板上製作可室溫操作、高速且低漏電流的InAs光檢測器★ 應用超寬頻光子傳送混波器達到遠距分佈及調變的20Gbit/s無誤碼無線振幅偏移調變資料傳輸於W-頻帶
★ 具有同時高速資料傳輸及產生直流電功率的 砷化鎵/磷化銦鎵的雷射功率轉換器★ 超高速(>1Gb/s)可見光發光二極體應用於塑膠光纖通訊及內部載子動力學的研究
★ 具有超低耗能,傳輸資料量比值在850nm波段超高速(40 Gb/s)面射型雷射★ 超高速(~300GHz)光偵測器的製造與其在毫米波生物晶片上的應用
★ 超高速覆晶式(>300GHz)高功率(~mW)光偵測器製作與量測★ 具有單空間模態,低發散角,高功率的鋅擴散二維850nm面射型雷射陣列
★ 應用於850到1550 nm波長光連結且 具有高速,高效率和大面積的p-i-n光偵測器★ 應用於中距離(2km)至短距離光連結知單模態、高速、高輸出光功率的850nm波段面射型雷射
★ 應用在光連接具有高可靠度高速(>25Gbit/sec) 850光波段的垂直共振腔雷射★ 具有高可靠度/高功率輸出與直流到次兆赫茲 (≧300GHz)操作頻寬的超高速光偵測器和其覆晶式封裝設計與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 隨著人工智慧(AI)和物聯網(IoT)產業的迅速發展,高速光連結系統所負荷的資料量大幅增加,共同封裝光學元件(Co-Packaged Optics, CPO)已成為光連結系統中的關鍵技術,因此需要藉由提高CPO系統的封裝密度,進而提升資料傳輸密度。將單模高速垂直共振腔面射型雷射(VCSEL)和單模光纖結合,相較於和多模光纖結合,能夠提供更高的資料傳輸密度。因此具有高單模輸出功率和強大的抗反射能力的VCSEL,在提高CPO的封裝密度中起著至關重要的作用。
在本論文中,我們設計新穎的鋅擴散結構,能有效抑制空間電洞燒炙(Spatial Hole Burning)效應帶來的影響,將傳統單模VCSEL常見的低頻roll off及抗光反射能力較差的問題最小化。
通過改變鋅擴散結構的孔徑,我們實現6.7 mW的高單模輸出功率、27GHz的寬3-dB頻率響應以及-137dB/Hz的低相對強度噪音值(Relative Intensity Noise, RIN)。在使用傳統多模光纖條件下進行眼圖量測,back-to-back (BTB)的Data rate可以達到56 Gbps, 500公尺傳輸的Data rate可以達到46Gbps。另外在反射光為-6dB的情況下,Data rate可以達到52Gbps。
我們將850nm單模VCSEL與單模光纖結合,進行長距離傳輸量測。在經過一公里單模光纖傳輸後,系統(VCSEL+光纖)的頻寬從26GHz增加到31GHz。這是首次藉由850nm波段的光纖,看到高達 5GHz明顯的頻寬提升。此外,眼圖量測在back-to-back(BTB)的條件下,Data rate可以得到56 Gbps,並且在200公尺傳輸後的Data rate同樣可以得到56Gbps,眼圖的品質相比BTB幾乎無劣化。
摘要(英) With the rapid development of the artificial intelligence (AI) and Internet of Things (IoT) industries, the data load on high-speed optical interconnect systems has significantly increased. Co-Packaged Optics (CPO) has become a key technology in optical interconnect systems. Therefore, it is necessary to enhance the packaging density of CPO systems to further increase data transmission density. Combining single-mode high-speed Vertical-Cavity Surface-Emitting Lasers (VCSELs) with single-mode fibers, as opposed to multi-mode fibers, can provide higher data transmission density. Therefore, VCSELs with high single-mode output power and strong anti-reflection capabilities play a crucial role in increasing the packaging density of CPO.
In this thesis, we designed a novel zinc diffusion structure that effectively suppresses the impact of Spatial Hole Burning (SHB) and minimizes the common issues of low-frequency roll-off and poor anti-reflection capability in traditional single-mode VCSELs.
By altering the aperture structure of zinc diffusion, we achieved a high single-mode output power of 6.7 mW, a wide 3-dB frequency response of 27 GHz, and a low Relative Intensity Noise (RIN) value of -137 dB/Hz. Eye diagram measurements under traditional multi-mode lens fiber conditions showed that the back-to-back (BTB) data rate reached 56 Gbps, the data rate for 500 meters of transmission was 46 Gbps, and with -6 dB reflected light, the data rate achieved was 52 Gbps.
We combined the 850nm single-mode VCSEL with single-mode fiber for long-distance transmission measurements. After one kilometer of single-mode fiber transmission, the system (VCSEL + fiber) bandwidth increased from 26GHz to 31GHz. This is the first time a significant 5GHz bandwidth enhancement has been observed using fiber at the 850nm wavelength. Additionally, eye diagram measurements under back-to-back (BTB) conditions showed a data rate of 56 Gbps, and the same data rate was maintained after 200 meters of transmission, with the eye diagram quality showing almost no degradation compared to BTB conditions.
關鍵字(中) ★ 垂直共振腔面射型雷射
★ 空間電洞燒炙表現
★ 單模
★ 高速數據傳輸
關鍵字(英) ★ VCSEL
★ Spatial Hole Burning Effect
★ Single-Mode
★ High-Speed Data Transmission
論文目次 摘 要 i
Abstract iii
致謝 iv
第一章 序論 1
1-1 簡介 1
1-2 AI資料中心 3
1-3 CPO介紹 5
1-4 高速VCSEL發展趨勢 8
1-5 高密度封裝 11
1-6 垂直共振腔面射型雷射(VCSEL) 簡介 13
1-7 面射型雷射的電流侷限 15
1-8 VCSEL之氧化層結構 17
1-9 濕氧化系統 20
1-9-1 VCSEL濕氧化原理 20
1-9-2 氧化層掏離製程 23
1-9-3 IR CCD系統 25
第二章 單模VCSEL的挑戰 26
2-1 小孔徑單模VCSEL 26
2-2 大孔徑單模VCSEL 28
2-3 850 nm波段VCSEL晶片之磊晶結構 30
2-4 最佳化鋅擴散結構之VCSEL 33
第三章 實驗流程 37
3-1 鋅擴散(Zn diffusion) 37
3-2 濕氧化製程 41
3-3 製作電極 (P Metal和N Metal) 48
3-4 BCB(Benzocyclobutene)製程 51
3-5 開洞(Via opening) 53
3-6 PAD金屬 56
第四章 實驗結果及探討 58
4-1 量測系統簡介 58
4-1-1 電流對電壓(I-V)的量測 58
4-1-2 光功率對電流(L-I)之量測 59
4-1-3 遠場(FFP Far Field Pattern)量測系統 60
4-1-4 頻譜(Spectrum)之量測系統 61
4-1-5 頻寬(Bandwidth)之量測系統 62
4-1-6 眼圖(Eye Pattern)量測系統 63
4-2 Gen1與Gen2鋅擴散結構變氧化孔徑量測 65
4-2-1 Gen1(Wz=8um)之光功率-電流-電壓(L-I-V)曲線 65
4-2-2 Gen1(Wz=8um)之頻寬及頻譜量測 66
4-2-3 Gen2(Wz=6.6um)之光功率-電流-電壓(L-I-V)曲線 68
4-2-4 Gen2(Wz=6.6um)之頻寬及頻譜量測 68
4-2-5 Gen2(Wz=5.6um)之光功率-電流-電壓(L-I-V)曲線 70
4-2-6 Gen2(Wz=5.6um)之頻寬及頻譜量測 70
4-3 Gen1與Gen2鋅擴散結構量測比較 72
4-3-1 光功率-電流-電壓(L-I-V)曲線比較 72
4-3-2 頻寬及頻譜量測比較 73
4-3-3 遠場發散角(Far Field Pattern, FFP)量測比較 74
4-3-4 眼圖(Eye Pattern)量測比較 75
4-4 相對強度噪音光調變振幅(RIN OMA)量測結果 78
4-5 單模光纖量測結果 82
4-5-1 單模VCSEL元件之常溫及高溫(75°C)量測 82
4-5-2 單模光纖長距離傳輸之頻寬量測 83
4-5-3 單模光纖長距離傳輸之眼圖量測 87
第五章 結論及未來探討 90
第六章 Reference 91
參考文獻 [1] M. Vallo, Technology & Market Analyst at Yole Intelligence, part of Yole Group for EETIMES, August 31, 2022.
https://www.yolegroup.com/strategy-insights/global-insights-into-the-co-packaged-optics-technology-platform/
[2] A. Andreyev, “Introducing data center fabric, the next-generation Facebook data center network,” Engineering at meta, Data Center Engineering, Network & Traffic, Production Engineering, Nov, 2014.
[3] V. Bhatt, VP Marketing and Datacom Vertical, “Multimode links based on high-speed VCSEL for cost-effective data center connectivity,” 2024 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 2024, pp. 1-3. M2D.1.
[4] C. Minkenberg, R. Krishnaswamy, A. Zilkie, and D. Nelson, “Co-packaged datacenter optics: Opportunities and challenges,” IET Optoelectronics, vol. 15, no. 2, pp. 77-91, 2021.
[5] ] R. Murty, J. Wang, S. Jiang, D. Dolfi, T. Wang, D. Vaughan, L. Giovane, “Toward 200G per Lane VCSEL-based Multimode Links,” 2024 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 2024, pp. 1-3. M2D.3.
[6] Tan, M., Xu, J., Liu, S. et al. Co-packaged optics (CPO): status, challenges, and solutions. Front. Optoelectron. vol. 16, no. 1, March, 2023.
https://doi.org/10.1007/s12200-022-00055-y
[7] https://mefiberoptic.com/what-are-fiber-optic-patch-cables-types/
[8] https://www.ist.hokudai.ac.jp/netjournal/net_46_1.html
[9] L. Dong, X. Gu and F. Koyama, “16-ch 1060-nm Single-mode Bottom-emitting Metal-aperture VCSEL Array for Co-packaged Optics,” 2023 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 2023, pp. 1-3. W4B.3.
[10] S. Nakagawa, D. Kuchta, C. Schow, R. John, L. A. Coldren, and Y. Chang, “1.5mW/Gbps Low Power Optical Interconnect Transmitter Exploiting High-Efficiency VCSEL and CMOS Driver,” 2008 Optical Fiber Communication Conference and Exhibition (OFC), San Diego, CA, USA, 2008, pp. OThS3
[11] W. W. Chow, K. D. Choquette, M. H. Crawford, K. L. Lear, and G. R. Hadley, “Design, fabrication, and performance of infrared and visible vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron., vol. 33, no. 10, pp. 1810–1824, Oct. 1997.
[12] K. D. Croquette and H. Q. Hou, “Vertical-cavity surface emitting lasers: Moving from research to manufacturing,” Proc. IEEE, vol. 85, no. 11, pp. 1730–1739, Nov. 1997
[13] Y. C. Chang, and L. A. Coldrem, “Efficient, High-data-rate Tapered oxide-aperture Vertical-Cavity Surface-Emitting Lasers” IEEE J. Sel. Top. Quantum Electron., vol. 15, no. 3, pp. 704-715, Jun. 2009.
[14] M. Yazdanypoor, and A. Gholami, “Optimizing Optical Output Power of Single-Mode VCSELs Using Multiple Oxide Layers,” IEEE J. Sel. Top. Quantum Electron., vol. 19, no. 4, pp. 1701708, Mar. 2013.
[15] 顏志成(民國101)。具有超低耗能,傳輸資料比值在850nm波段超高速(40Gbit/s)面射型雷射。國立中央大學電機工程研究所論文,桃園市。
[16] R. W. Herrick, A. Dafinca, P. Farthouat, A. A. Grillo, S. J. McMahon, and A. R. Weidberg, “Corrosion-Based Failure of Oxide-Aperture VCSELs,” IEEE J. Quantum Electron., vol. 49, no. 12, pp. 1045-1052, Oct. 2013.
[17] B. E. Deal and A. S. Grove, “General relationship for the thermal oxidation of silicon,” J. Appl. Phys., vol. 36, no. 12, pp. 3770–3778, 1965.
[18] K. Nakajima, “Calculation of stresses in InxGa1−xAs/InP strained multilayer heterostructures,” J. Appl. Phys., vol. 72, no. 11, pp. 5213-5219, Dec. 1992.
[19] K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in Selective Wet Oxidation of AlGaAs Alloys,” IEEE J. Sel. Top. Quantum Electron., vol. 3, no. 3, pp. 916-926, Jun. 1997.
[20] K. D. Choquette, K. L. Lear, R. P. Schneider, Jr., K. M. Geib, J. J. Figiel, and R. Hull, “Fabrication and Performance of Selectively Oxidized Vertical-Cavity Lasers,” IEEE Photon. Technol. Lett., vol. 7, no.11, pp.1237-1239, Nov. 1995.
[21] F. A. Kish, S. A. Maranowski, G. E. Hofler, N. Holonyak, S. J. Caracci, J. M. Dallesasse and K. C. Hsieh “Dependence on doping type (p/n) of the water vapor oxidation of high‐gap AlxGa1-xAs,” Appl. Phys. Lett., vol. 60, no. 25, pp. 3165-3167, Jun. 1992.
[22] K. D. Choquette et al., “Selective oxidation of buried AlGaAs versus AlAs layers,” Appl. Phys. Lett., vol. 69, no. 10, pp. 1385–1387, 1996.
[23] K. L. Lear and A. N. Al-Omari, “Progress and issues for high speed vertical cavity surface emitting lasers,” Proc. SPIE, vol. 6484, pp. 64840J1–64840J-12, 2007.
[24] R. S. Geels, S. W. Corzine, J. W. Scott, D. B. Young, and L. A. Coldren, “Low threshold planarized vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett., vol. 2, pp. 234–236, 1990
[25] A. Haglund, J. S. Gustavsson, J. Vukusic, P. Modh, and A. Larsson, “Single Fundamental-Mode Output Power Exceeding 6mW from VCSELs with a Shallow Surface Relief,” IEEE Photon. Technol. Lett., vol. 16, no. 2, pp. 368-370, Feb. 2004.
[26] J. E. Bowers, “High speed semiconductor laser design and performance,” Solid-State Electron., vol. 30, no. 1, pp. 1–11, Jan. 1987.
[27] R. Safaisini, J. R. Joseph, and K. L. Lear, “Scalable high-CW-power highspeed 980-nm VCSEL arrays,” IEEE J. Quantum Electron., vol. 46, no. 11, pp. 1590–1596, Nov. 2010.
[28] J.-L. Yen, X.-N. Chen, K.-L. Chi, and J.-W. Shi, “850 nm Vertical-cavity surface-emitting laser arrays with enhanced high-speed transmission performance over a standard multi-mode fiber,” Journal of Lightwave Technology., vol. 35, no. 15, pp. 3242–3249, Aug. 2017.
[29] R. S. Geels, S. W. Corzine, J. W. Scott, D. B. Young, and L. A. Coldren, “Low threshold planarized vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett., vol. 2, pp. 234–236, 1990
[30] E. Haglund et al., “30 GHz bandwidth 850 nm VCSEL with sub-100 fJ/bit energy dissipation at 25–50 Gbit/s,” Electron. Lett., vol. 51, pp. 1096–1098, 2015.
[31] Z. Khan, Y.-H. Chang, T.-L. Pan, Y.-C. Zhao, Y.-Y. Huang, C.-H. Lee, J.-S. Chang, C.-Y. Liu, C.-Y. Lee, C.-Y. Fang, and J.- W. Shi, “High-Brightness, High-Speed, and Low-Noise VCSEL Arrays for Optical Wireless Communication,” IEEE Access, vol. 10, pp. 2303-2317, Dec. 2022.
[32] K. Tai, G. Hasnain, J. D. Wynn, R. J. Fischer, Y. H. Wang, B. Weir, J. Gamelin, and A.Y. Cho, “90% coupling of top surface emitting GaAs/AlGaAs quantum well laser output into 8μm diameter core silica fibre,” Electron. Lett., vol. 26, no. 19, pp. 1628-1629, Sep., 1990.
[33] Y. J. Yang, T. G. Dziura, R. Fernandez, S. C. Wang, G. Du, and S. Wang, “Low-threshold operation of a GaAs single quantum well mushroom structure surface-emitting laser,” Appl. Phys. Lett., vol. 58, pp. 1780–1782, Jun. 1991
[34] E. W. Young, K. D. Choquette, S. L. Chuang, K. M. Geib, A. J. Fischer, and A. A. Allerman, “Single-transverse-mode vertical-cavity lasers under continuous and pulsed operation,” IEEE Photon. Technol. Lett., vol. 13, pp. 927-929, Sep. 2001.
[35] Y. Liu, W.-C. Ng, B. Klein, and K. Hess, “Effects of the spatial nonuniformity of optical transverse modes on the modulation response of vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron., vol. 39, no. 1, pp. 99–108, Jan. 2003.
[36] J. W. Shi, C. C. Chen, Y. S. Wu, S. H. Guol, C. Kuo, and Y. J. Yang, “High power and high speed Zn-diffusion single fundamental mode vertical cavity surface emitting lasers at 850 nm wavelength,” IEEE Photon. Technol. Lett., vol. 20, no. 13, pp. 1121–1123, Jul. 2008.
[37] K. Li, X. Chen, J. E. Hurley, J. S. Stone, and M.-J. Li, "High data rate few-mode transmission over graded-index single-mode fiber using 850 nm single-mode VCSEL," Opt. Express, vol. 27, no. 15, pp. 21395-21404, July, 2019.
[38] X. Chen, K. Li, J. S. Stone, and M. J. Lia, “Enhanced 850-nm SM VCSEL transmission by favorable chirp interaction with fiber dispersion,” AIP Advances, vol. 11, no. 10, pp. 1-7, Oct. 2021.
[39] S. Shimizu, C. Ge, L. Dong, X. Gu, A. Matsumoto, S. Shinada, F. Koyama, “Record High-baud-rate 128-Gbit/s NRZ-OOK Direct Modulation of 1060-nm Single-mode VCSEL for Transmission over 2-km Standard SMF,” 2023 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 2023, pp. 1-3.
指導教授 許晉瑋(Jin-Wei Shi) 審核日期 2024-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明