參考文獻 |
[1] Santiago Royo, Maria Ballesta-Garcia “An Overview of Lidar Imaging Systems for Autonomous Vehicles” Appl. Sci. 2019, 9(19), 4093
[2] B. Behroozpour et al “Chip-Scale Electro-Optical 3D FMCW Lidar with 8μm Ranging Precision,” ISSCC Dig. Tech. Papers, San Francisco, CA, USA, pp. 214-215, Feb. 2016.
[3] https://www.novuslight.com/fmcw-the-future-of-lidar.html
[4] Novel designed Avalanche Photodiode with enhanced performance for application in 4-D/ 3-D FMCW LiDAR systems
[5] T. Baba et al., "Silicon Photonics FMCW LiDAR Chip With a Slow-Light Grating Beam Scanner," in IEEE Jour. of Selec. Top. in Quantum Electronics, vol. 28, no. 5, pp. 1-8, Sept.-Oct. 2022.
[6] https://www.silc.com/
[7] https://www.silc.com/product/
[8] M. Anagnosti, C. Caillaud, J.-F. Paret, F. Pommereau, G. Glastre, F. Blache, and M. Achouche, “Record Gain x Bandwidth (6.1 THz) Monolithically Integrated SOA-UTC Photoreceiver for 100-Gbit/s Applications,” J. Lightwave Technol. vol. 33, pp. 1186-1190, March, 2015.
[9] Shuang Gao, Maurice O’Sullivan, and Rongqing Hui, "Complex-optical-field lidar system for range and vector velocity measurement", Opt Express, Vol. 20, No. 23,25867-25875 (2012).
[10] S. O. Kasap,"Optoelectronics and photonics: principles and practices," Prentice Hall, 2001.
[11] F. Signorelli, F. Telesca, E. Conca, A. D. Frera, A. Ruggeri, A. Giudice, and A. Tosi, "Low-Noise InGaAs/InP Single-Photon Avalanche Diodes for Fiber-Based and Free-Space Applications," IEEE J. Sel. Top. Quantum Electron., vol. 28, no. 2, pp. 3801310, April, 2022.
[12] https://www.tiri.narl.org.tw/Files/Doc/Publication/InstTdy/212/0210
[13] D. A. Ramirez, M. M. Hayat, G. Karve, J. C. Campbell, S. N. Torres, Bahaa E. A. Saleh, and M. C. Teich, " Detection Efficiencies and Generalized Breakdown Probabilities for Nanosecond-Gated Near Infrared Single-Photon Avalanche Photodiodes," IEEE J. Sel. Top. Quantum Electron., vol. 42, no. 2, pp. 137-145, Mar., 2006.
[14] M. A. Saleh, M. M. Hayat, P. P. Sotirelis, A. L. Holmes, J. C. Campbell, Bahaa E. A. Saleh and M. C. Teich, "Impact-Ionization and Noise Characteristics of Thin III-V Avalanche Photodiodes," IEEE Trans. Electron Devices, vol. 48, no.12, pp. 2722-2731, Dec., 2001.
[15] http://impact-ionisation.group.shef.ac.uk/ionisation_coeff/InP/
[16] http://impact-ionisation.group.shef.ac.uk/ionisation_coeff/InAlAs/
[17] S. Lee, M. Winslow, C. H. Grein, S. H. Kodati, A. H. Jones, D. R. Fink, P. Das, M. M. Hayat, T. J. Ronningen, J. C. Campbell, and S. Krishna, "Engineering of impact ionization characteristics in In0.53Ga0.47As/Al0.48In0.52As superlattice avalanche photodiodes on InP substrate," Sci. Rep., vol. 10, pp. 16735, Oct., 2020.
[18] J. Zhang, H. Wang, G. Zhang, K. H. Tan, S. Wicaksono, H. Xu, C. Wang, Y. Chen, Y. Liang, Charles C. W. Lim, S. F. Yoon, and X. Gong, "High-performance InGaAs/InAlAs single-photon avalanche diode with a triple-mesa structure for near-infrared photon detection," Opt. Lett., vol. 46, no.11, pp. 2670-2673, June, 2021.
[19] Neil Na , Yen-Cheng Lu , Yu-Hsuan Liu , Po-Wei Chen , Ying-Chen Lai , You-Ru Lin , Chung-Chih Lin, Tim Shia , Chih-Hao Cheng & Shu-Lu Chen, "Room temperature operation of germanium– silicon single-photon avalanche diode," Nature 627, pages 295–300 (2024)
[20] C. I. Dai, "Single-Photon Avalanche Photodiode Fabricated with Standard CMOS Technology," Master thesis, National Chiao Tung University, Taiwan, July, 2010.
[21] http://www.film-top1.com/news-info.asp?id=279
[22] Z. Ahmad, S.-I Kuo, Y.-C. Chang, et al.,"Avalanche Photodiodes with Dual Multiplication Layers and Ultra-High Responsivity-Bandwidth Products for FMCW Lidar System Applications," IEEE J. Sel. Top. Quantum Electron., 28(2), 3800709, (2022), doi: 10.1109/JQE.2020.3043090
[23] Naseem et al., "Top-Illuminated Avalanche Photodiodes With Cascaded Multiplication Layers for High-Speed and Wide Dynamic Range Performance," in Journal of Lightwave Technology, vol. 40, no. 24, pp. 7893-7900, 15 Dec.15, 2022, doi:10.1109/JLT.2022.3204743
[24] Z. Ahmad, P.-S. Wang, Naseem, Y-C. Huang, et al., “Avalanche photodiodes with multiple multiplication layers for coherent detection,” Sci. Rep., 12, 16541, (2022)
[25] Naseem, Z. Ahmad, Y.-M. Liao, P.-S. Wang, et al., “Avalanche Photodiodes with Composite Charge-Layers for Low Dark Current, High-Speed, and High-Power Performance,” IEEE J. Sel. Top. Quantum Electron., 28(2), 3801910 (2022), doi: 10.1109/JSTQE.2021.3111895.
[26] M. Nada, Y. Yamada and H. Matsuzaki, "Responsivity-Bandwidth Limit of Avalanche Photodiodes: Toward Future Ethernet Systems," IEEE J. Sel. Top. Quantum Electron., 24(2), 3800811 (2018),
[27] G. S. Kinsey, J. C. Campbell, and A. G. Dentai, “Waveguide avalanche photodiode operating at 1.55 µm with a gain-bandwidth product of 320 GHz,” IEEE Photon. Tech. Lett., 13(8), 842–844, (2001)
[28] https://www.excelitas.com/product/c30662eh-1-ingaas-apd-200um-18
[29] https://www.hamamatsu.com/content/dam/hamamatsu-photonics/sites/documents/99_SALES_LIBRARY/ssd/g14858-0020aa_kapd1068e.pdf
[30] S. Lee, X. Jin, H. Jung, H. Lewis, et al., “High gain, low noise 1550 nm GaAsSb/AlGaAsSb avalanche photodiodes,” Optica, 10(2), 147-154 (2023)
[31] M. Huang, S. Li, P. Cai, et al, “Germanium on Silicon Avalanche Photodiode,” IEEE J. Sel. Top. Quantum Electron., 24(2), 3800911, (2018)
[32] X. Li, N. Li, S. Demiguel, et al., "A comparison of front- and backside-illuminated high-saturation power partially depleted absorber photodetectors," IEEE J. Sel. Top. Quantum Electron., 40(9), 1321-1325, (2004),
[33] Shuang Gao, Maurice O’Sullivan, and Rongqing Hui, “Complex-optical-field lidar system for range and vector velocity measurement” Optics Express,Vol. 20,Issue 23,pp. 25867-25875(2012)
[34] Hegna, T.A.; Pettersson, H.; Teknova, K.G.; Laundal, K.M. “Inexpensive 3-D Laser Scanner System Based on a Galvanometer Scan Head” International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVIII, Part 5 Commission V Symposium, Newcastle upon Tyne, UK. 2010
[35] https://www.thorlabs.de/thorproduct.cfm?partnumber=GVSM002/M
[36] Wang, F. -K. et al. Review of Self-Injection-Locked Radar Systems for Noncontact Detection of Vital Signs. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology 4,294-307 (2020). |