博碩士論文 111521010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:38 、訪客IP:3.142.124.83
姓名 吳燁昆(Yen-Kun Wu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 用於 50 Gbit/sec 被動式光纖網路的超高速 累增崩潰光電二極體之開發
(The Development of Ultrafast Avalanche Photodiode for 50G PON)
相關論文
★ 氮化鎵串接式綠光發光二極體在超高溫(200 ℃)操作的高速表現之和其內部之載子動力學★ 32Gbit/s 低耗能 850nm InAlGaAs 應變量子井面射型雷射
★ 具有大面積且在高靈敏度、低暗電流操作下具有頻寬增強效應的10 Gbit/sec平面式 InAlAs 累增崩潰光二極體★ 應用串接式技術達到超高飽和電流-頻寬乘積(7500mA-GHz,75mA,100GHz)的近彈道傳輸光偵測器
★ 利用鋅擴散方式在半絕緣(GaAs)基板上製作可室溫操作、高速且低漏電流的InAs光檢測器★ 應用超寬頻光子傳送混波器達到遠距分佈及調變的20Gbit/s無誤碼無線振幅偏移調變資料傳輸於W-頻帶
★ 具有同時高速資料傳輸及產生直流電功率的 砷化鎵/磷化銦鎵的雷射功率轉換器★ 超高速(>1Gb/s)可見光發光二極體應用於塑膠光纖通訊及內部載子動力學的研究
★ 具有超低耗能,傳輸資料量比值在850nm波段超高速(40 Gb/s)面射型雷射★ 超高速(~300GHz)光偵測器的製造與其在毫米波生物晶片上的應用
★ 超高速覆晶式(>300GHz)高功率(~mW)光偵測器製作與量測★ 具有單空間模態,低發散角,高功率的鋅擴散二維850nm面射型雷射陣列
★ 應用於850到1550 nm波長光連結且 具有高速,高效率和大面積的p-i-n光偵測器★ 應用於中距離(2km)至短距離光連結知單模態、高速、高輸出光功率的850nm波段面射型雷射
★ 應用在光連接具有高可靠度高速(>25Gbit/sec) 850光波段的垂直共振腔雷射★ 具有高可靠度/高功率輸出與直流到次兆赫茲 (≧300GHz)操作頻寬的超高速光偵測器和其覆晶式封裝設計與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在過去的 20 年裡,高速雪崩光電二極體(APDs)在以太網被動
式光纖網絡(EPON)和 10 G-EPON 的發展中扮演了至關重要的角色。
商業化的基於 In0.52Al0.48As 的 10 G APDs 通常能夠提供比其 p-i-n
光電二極體(PDs)對應產品高出 8 dB 的靈敏度。然而,在下一代 50
G-PON 中,APDs 在中等增益操作(約 10)下所展示的 3-dB 帶寬不
足以滿足 50 G 操作的頻寬要求(>30 GHz),這使得 50 G APD 接收
器的靈敏度提升並不明顯。已有研究表明,可以通過使用複雜的均衡
器積體電路(ICs)和高功率 PD 與半導體光放大器(SOA)進行混合
或單晶積體化整合來改善接收端的靈敏度。然而,這些額外的 ICs 和
預放大的SOAs需要大電流偏壓,導致接收端的總功率消耗顯著增加。
此外,SOAs 中的額外放大自發輻射(ASE)雜訊可能導致接收端靈
敏度的改善非常有限。
在高速雪崩光電二極體(APD)中,減薄倍增(M)層是提高其增
益帶寬積(GBP)和降低過量雜訊的有效方法。然而,這種縮減通常
伴隨著一些問題,例如由於非常薄的累增層(<100 nm)導致的直接
v
隧道效應引起的巨大漏電流(>1 μA),以及由於空乏層厚度減少而導
致的 RC 限制頻寬下降。
在本篇論文中,我們展示了一種p極面朝上蝕刻平台結構的APD,
其中在薄(<50nm)且疊接式的 In0.52Al0.48As 累增層下方埋有厚的
InP 集極層,可以從根本上降低暗電流、RC 限制頻寬、累增增益和雪
崩延遲時間之間的權衡。應用這種先進的元件結構,我們探討了具有
不同累增層厚度(<50 nm)的 APD 性能。而此元件的主動窗口(平台)
其直徑為 10(20)μm,其優化後的累增層元件在 1.55 μm 波長的激
發下,於偏壓為 0.9Vb 時有著低暗電流(~0.4 μA)和高響應度(2.8 A/W;
增益=9.3)的表現。
此外,該元件表現出優異的動態性能,包括在 0.84 A/W 時的寬光
電頻寬(44 GHz)、極大的 GBP(1.03 THz)和高飽和電流(12 mA),
這對應於在 45 GHz 時較大的毫米波(MMW)輸出功率(~0 dBm)。
我們的增益頻寬積表現甚至超越最近所發表的 Si-Ge APD。
優異的速度性能結合寬動態範圍和簡單的頂部收光結構,為進一
步提高 50 G 的被動式光纖網絡(PON)的靈敏度開闢了新可能。
摘要(英) Over the last 20 years, high-speed avalanche photodiodes (APDs) have
played a vital role in the development of the Ethernet Passive Optical
Network (EPON) and 10 G-EPON. The commercially available
In0.52Al0.48As based 10 G APDs can usually provide an 8 dB higher
sensitivity than that of their p-i-n photodiode (PDs) counterparts. However,
in the next generation of 50 G-PON, the 3-dB bandwidth demonstrated by
APDs under moderate gain operation (~10) is insufficient to meet the
bandwidth requirements for 50 G operation (> 30 GHz), with less
pronounced benefits for the sensitivity of 50 G APD based receivers .
It has been demonstrated that the sensitivity at the receiver-end can be
improved by the incorporation of complex equalizer integrated circuits
(ICs) and high-power PDs, which are hybrid or monolithic integrated with
the semiconductor optical amplifier (SOA).
However, both the additional ICs and pre-amplified SOAs need large
extra bias currents which leads to a significant increase of overall power
consumption in the receiver-end. Moreover, the additional amplified
spontaneous emission (ASE) noise in the SOAs may result in marginal
improvement in sensitivity in the receiver-end.

ii
The thinning of the multiplication (M) layers in high-speed avalanche
photodiodes (APDs) is an effective way to boost up its gain-bandwidth
product (GBP) and reduce excess noise. However, such downscaling
usually comes with a price, a huge leakage current (> 1 μA) induced by
direct tunneling through the ultimate thin M-layer (< 100 nm) and
degradation of the RC-limited bandwidth due to the decrease in depletion
layer thickness.
In this work, we demonstrate how a p-side up top-illuminated APD
structure with a thick InP collector layer buried below the thin and cascaded
In0.52Al0.48As based multiplication layer can fundamentally relax the tradeoffs among the dark current, RC-limited bandwidth, multiplication gain,
and avalanche delay time. Applying this advanced device structure, we
then explore the performance of APDs with different thin M-layer
thicknesses (< 50 nm). Under1.55 μm wavelength excitation, a device
fabricated with a large active window (mesa) diameter of 10 (20) μm and
an optimized M-layer thickness exhibits a dark current as low as ~0.4 μA
and a high responsivity (2.8 A/W; gain=9.3) at 0.9 Vbr.
Moreover, this device exhibits excellent dynamic performance,
including a wide optical-to-electrical bandwidth (44 GHz at 0.84 A/W), an
extremely large GBP of 1.03 THz, and a high saturation current (12 mA),
which corresponds to a large millimeter-wave (MMW) output power (~0
dBm) at 45 GHz.
iii
The excellent speed performance coupled with the wide dynamic
range and simple top-illuminated structure opens up new possibilities to
further enhance the sensitivity of 50 G passive optical networks (PONs).
關鍵字(中) ★ 被動式光纖網路
★ 累增崩潰光電二極體
關鍵字(英)
論文目次 Abstract i
摘要 iv
目錄 vii
圖目錄 ix
表目錄 xiv
第一章 序論 1
§1-1光纖網路 1
I. 主動乙太網路(Active Ethernet, AE) 2
II. 被動式光纖網路(Passive Optical Network, PON) 3
III. 50G PON 發射和接收器發展近況 6
§1-2 累增崩潰光二極體(APD)之工作原理 15
I. Si-Ge 累增崩潰光二極體(APD) 18
II. InP based累增崩潰光二極體(APD) 23
III. InAlAs based 累增崩潰光二極體(APD) 25
§1-3 論文研究動機及架構 27
第二章 累增崩潰光二極體之設計與製作 28
§2-1 APD中的電場限制 28
§2-2累增崩潰光二極體之設計與模擬 31
§2-3累增崩潰光二極體之製作 42
§2-4疊接式累增層設計結論 62
第三章 累增崩潰光偵測器之直流與頻寬量測及結果討論 64
§3-1 DC 量測系統之架設 64
§3-2光電流量測結果 66
§3-3頻率響應量測系統之架設 69
§3-4頻率響應量測結果 70
§3-5 元件模擬S11反射係數測量結果 73
§3-6 載子傳輸時間與RC限制頻寬量測結果 76
§3-7 Heterodyne-Beating 量測系統之架設 81
§3-8 光飽和電流量測結果 84
第四章 結論與未來研究方向 86
§4-1 結論 86
§4-2 未來研究方向 87
參考文獻 94
參考文獻 [1] https://www.viavisolutions.com/en-us/fttx-network-designdeployment
[2] L. Breyne1 et al., " 50G Burst-Mode Receiver Using Monolithic SOAUTC and Burst-Mode TIA," 2024 Optical Fiber Communications
Conference and Exhibition (OFC), San Diego, CA, USA, 2024, pp.
Tu3H.1.
[3] S. Nishikawa, et al. “SOA-integrated High-power EML-CAN for
50G-PON Downstream,” 2024 Optical Fiber Communications
Conference and Exhibition (OFC), San Diego, CA, USA, 2024, pp.
Tu2D.6.
[4] https://blog.csdn.net/qq_38987057/article/details/106774364
[5] N.Tanaka, D.Umeda "25G Receiver performance, "November 7-9th,
2016 Sumitomo Electric Industries, LTD.
[6] 50-Gigabit-capable passive optical networks (50GPON): Physical
media dependent (PMD) layer specification, Recommendation
G.9804.3, ITU-T, Aug. 2019. [Online]. Available:
http://handle.itu.int/11.1002/1000/14714.
[7] G. Coudyzer et al., "100 Gbit/s PAM-4 Linear Burst-Mode
Transimpedance Amplifier for Upstream Flexible Passive Optical
Networks," in Journal of Lightwave Technology, vol. 41, no. 12, pp.
3652-3659, July 2023.
[8] T. Gurne et al., “First demonstration of a 100 Gbit/s PAM-4 linear
burst-mode transimpedance amplifier for upstream flexible PON,” in
Proc. Eur. Conf. Opt. Commun, 2022, pp. 1–4.
95
[9] S. O. Kasap, "Optoelectronics and photonics: principles and
practices," Prentice Hall, 2001.
[10] M. Huang, S. Li, P. Cai, G. Hou, T.-I. Sun, W. Chen, C.-Y. Hong, and
D. Pan, “Germanium on Silicon Avalanche Photodiode,” IEEE J. of
Sel. Topics in Quantum Electronics, vol. 24, no. 2, pp. 3800911,
March/April 2018.
[11]B. Shi, F. Qi, P. Cai, X. Chen, Z. He, Y. Duan, G. Hou, T. Su, S. Li, W.
Chen, C. Hong, R.-Chen Yu and D. Pan., "106 Gb/s Normal-Incidence
Ge/Si Avalanche Photodiode with High Sensitivity," 2020 Optical
Fiber Communications Conference and Exhibition (OFC), 2020, pp.
1-3.
[12] F. Signorelli, F. Telesca, E. Conca, A. D. Frera, A. Ruggeri, A.
Giudice, and A. Tosi, "Low-Noise InGaAs/InP Single-Photon
Avalanche Diodes for Fiber-Based and Free-Space Applications,"
IEEE J. Sel. Top. Quantum Electron., vol. 28, no. 2, pp. 3801310, April,
2022.
[13]J. C. Campbell, et al., Recent Advances in Avalanche
Photodiodes,July/Aug. 2004.
[14]E. Ishimura, E. Yagyu, M. Nakaji, S. Ihara, K. Yoshiara, T. Aoyagi, Y.
Tokuda, and T. Ishikawa, "Degradation Mode Analysis on Highly
Reliable Guarding-Free Planar InAlAs Avalanche Photodiodes,"
IEEE/OSA Journal of Lightwave Technology, vol. 25, pp. 3686-
3693,Dec., 2007.
[15] B. F. Levine, R. N. Sacks, J. Ko, M. Jazwiecki, J. A. Valdmanis, D.
Gunther, and J. H. Meier, "A New Planar InGaAs-InAlAs Avalanche
96
Photodiode," IEEE Photon. Tech. Lett., vol. 15, pp. 1898-1900, Sep.,
2006.
[16]J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X.
Zheng, X. Li, J. D. Beck, M. A. Kinch, A. Huntington, L. A. Coldren,
J. Decobert, and N. Tscherptner, "Recent Advances in Avalanche
Photodiodes," IEEE J. of Sel. Topics in Quantum Electronics, vol. 10,
pp. 777-787, July/Aug., 2004.
[17]M. Lahrichi, G. Glastre, E. Derouin, D. Carpentier, N. Lagay, J.
Decobert, and M. Achouche, "240-GHz Gain-Bandwidth Product
Back-Side Illuminated AlInAs Avalanche Photodiodes,"IEEE
Photonics Technology Letters,vol.22,pp.1373-1375, September 2010
[18] M. Nada, Y. Yamada and H. Matsuzaki, "Responsivity-Bandwidth
Limit of Avalanche Photodiodes: Toward Future Ethernet Systems,"
IEEE J. of Sel. Topics in Quantum Electronics, vol. 24, no. 2, pp. 1-11,
March-April 2018.
[19]C. I. Dai, "Single-Photon Avalanche Photodiode Fabricated with
Standard CMOS Technology," Master thesis, National Chiao Tung
University, Taiwan, July, 2010.
[20]E.Jan "Low Noise Transimpedance Amplifier Design Using Berkeley
Analog Generator,"EECS Department, University of California,
Berkeley Technical Report No. UCB/EECS-2020-146 August 13,
2020
[21]http://www.film-top1.com/news-info.aspid_279.html
[22]B. Shi, F. Qi, P. Cai, X. Chen, Z. He, Y. Duan, G. Hou, T. Su, S. Li, W.
Chen, C. Hong, R.-Chen Yu and D. Pan., "106 Gb/s Normal-Incidence
Ge/Si Avalanche Photodiode with High Sensitivity," 2020 Optical
97
Fiber Communications Conference and Exhibition (OFC), 2020, pp.
1-3.
[23]Nassem, Po-Shun Wang, Zohauddin Ahmad, Syed Hasan Parvez, Sean
Yang, H.-S. Chen, Hsiang-Szu Chang, Jack Jia-Sheng Huang, and JinWei Shi, "Top-Illuminated Avalanche Photodiodes With Cascaded
Multiplication Layers for High-Speed and Wide Dynamic Range
Performance," Journal of Lightwave Technology, vol. 40, no. 24, pp.
7893-7900, 15 Dec.15, 2022, doi: 10.1109/JLT.2022.3204743
[24]M. Nada, T. Yoshimatsu, F. Nakajima, K. Sano and H. Matsuzaki, "A
42-GHz Bandwidth Avalanche Photodiodes Based on III-V
Compounds for 106-Gbit/s PAM4 Applications," J. Lightwave
Technol., vol. 37, no. 2, pp. 260-265, Jan. 2019.
[25]M. Nada, Y. Yamada and H. Matsuzaki, "Responsivity-Bandwidth
Limit of Avalanche Photodiodes: Toward Future Ethernet Systems,"
IEEE J. of Sel. Topics in Quantum Electronics, vol. 24, no. 2, pp. 1-11,
March-April 2018.
[26]Shi, Y., Li, X., Chen, G. et al. "Avalanche photodiode with ultrahigh
gain–bandwidth product of 1,033 GHz. "Nat. Photon. (2024).
https://doi.org/10.1038/s41566-024-01421-2
[27]J.-W. Shi, K.-L. Chi, C.-Y. Li, and J.-M. Wun "Dynamic Analysis of
High-Efficiency InP Based Photodiode for 40 Gbit/sec Optical
Interconnect across a Wide Optical Window (0.85 to 1.55 µm),"
Journal of Lightwave Technology, vol. 33, no. 4, pp. 921- 927, Feb.,
2015
[28]N. Shimizu, N. Watanabe, T. Furuta, and T. Ishibashi, "InP-InGaA UniTraveling-Carrier Photodiode With Improved 3-dB Bandwidth of
98
Over 150GHz," IEEE Photon. Technol. Lett., vol. 10, pp. 412-414, Mar.
1998.
[29]J.-W. Shi, C.-B. Huang, and C.-L. Pan, "Millimeter-wave Photonic
Wireless Links for Very-High Data Rate Communication," NPG Asia
Materials, vol. 3, No. 2, pp. 41-48, April, 2011.
[30]陳信瑜「具有高功率、超寬頻表現在 W-頻段(75-110GHz)的光子
傳輸器 High-Power and Ultra-Wide Bandwidth Photonic Transmitter
at W-band (75-110GHz)」,國立交通大學,博士論文, 民國 99 年。
[31]B. Wang, Z. Huang, Y. Yuan, D. Liang, X. Zeng, M. Fiorentino, and R.
G. Beausoleil, "64 Gb/s low-voltage waveguide SiGe avalanche
photodiodes with distributed Bragg reflectors," Photonics Research,
vol. 8, no. 7, pp. 1118-1123, July, 2020.
[32]MACOM, 100 Chelmsford Street, Lowell, MA, 0185, United States.
(Product: MARP-BA56)
[33]T. Okimoto, K. Ashizawa, H. Mori, K. Ebihara, K. Yamazaki, S.
Okamo-to,K. Horino, Y. Ohkura, H. Yagi, M. Ekawa and Y. Yoneda,
"106-Gb/s Waveguide AlInAs/GaInAs Avalanche Photodiode with
Butt-joint Coupling Structure," 2022 Optical Fiber Communications
Conference and Exhibition (OFC), 2022, pp.W3D.2.
[34]G. S. Kinsey, J. C. Campbell, and A. G. Dentai, “Waveguide avalanche
photodiode operating at 1.55 µm with a gain-bandwidth product of 320
GHz,” IEEE Photon. Tech. Lett., vol. 13, no. 8, pp. 842–844, Aug.
2001.
[35]B. Shi, F. Qi, P. Cai, X. Chen, Z. He, Y. Duan, G. Hou, T. Su, S. Li, W.
Chen, C. Hong, R.-Chen Yu and D. Pan., "106 Gb/s Normal-Incidence
Ge/Si Avalanche Photodiode with High Sensitivity," 2020 Optical
Fiber Communications Conference and Exhibition (OFC), 2020,
pp.M3D.2.
99
[36]M. Nada, T. Yoshimatsu, F. Nakajima, K. Sano and H. Matsuzaki, "A
42-GHz Bandwidth Avalanche Photodiodes Based on III-V
Compounds for 106-Gbit/s PAM4 Applications,"Journal of
Lightwave Technology., vol. 37, no. 2, pp. 260-265, Jan. 2019.
[37]M. Nada, Y. Muramoto, H. Yokoyama and H. Matsuzaki, "High-speed
high-power-tolerant avalanche photodiode for 100-Gb/s applications,"
2014 IEEE Photonics Conference, San Diego, CA, USA, 2014, pp.
172-173, doi: 10.1109/IPCon.2014.6995303.
[38]Albis Optoelectronics AG, Moosstrasse 2a, 8803 Rueschlikon,
Switzerland. (Product: APD20E1)
[39]Nassem, Nan-Wei Chen, Syed Hasan Parvez, Zohauddin Ahmad, Sean
Yang, H-S Chen, Hsiang-Szu Chang, Jack Jia-Sheng Huang, and JinWei Shi, "Simultaneous enhancement of the bandwidth and
responsivity in high-speed avalanche photodiodes with an optimized
flip-chip bonding package," Opt. Express, vol. 31, pp. 26463-26473,
July, 2023.
[40]16 T. Beckerwerth, R. Behrends, F. Ganzer, P. Runge and M. Schell,
"Linearity Characteristics of Avalanche Photodiodes For InP Based
PICs," in IEEE Journal of Selected Topics in Quantum Electronics, vol.
28, no. 2, pp. 1-8, March-April 2022, Art no. 3803408,doi:
10.1109/JSTQE.2021.3127853.
[41] M. Nada, Y. Yamada, and H. Matsuzaki, “A High-Linearity
Avalanche Photodiodes with a Dual-Carrier Injection Structure,” IEEE
Photon. Technol. Lett, vol. 29, no. 21, pp. 1828-1831, Nov., 2017.
[42] M. Nada, Y. Muramoto, H. Yokoyama, T. Ishibashi, and H. Matsuzaki,
"Triple-mesa Avalanche Photodiode With Inverted P-Down Structure
for Reliability and Stability," IEEE/OSA Journal of Lightwave
Technology, vol. 32, no. 8, pp. 1543-1548, April, 2014.
[43]https://zh.wikipedia.org/zh-tw/%E8%A6%86%E6%
100
[44]N. Li, H. Chen, N. Duan, M. Liu, S. Demiguel, R. Sidhu, A. L. Holmes,
Jr., and J.C. Campbell, "High Power Photodiode Wafer Bonded to Si
Using Au With Improved Responsivity and Output Power" IEEE
Photon. Technol. Lett, vol. 18, pp. 2526-2528, Dec. 2006.
[45]N. Duan, X. Wang, N. Li, H.-D. Liu, and Joe C. Campbell "Thermal
Analysis of High-Power InGaAs-InP Photodiodes," IEEE Journal of
Quantum Electronics, vol. 42, no. 12, pp. 1255-1258, Dec. 2006.
指導教授 許晉瑋 審核日期 2024-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明