參考文獻 |
Ansari, M. A., & Singh, D. K. (2019). An approach for human machine interaction
using dynamic hand gesture recognition. In 2019 ieee conference
on information and communication technology (pp. 1–6).
Biswas, K. K., & Basu, S. K. (2011). Gesture recognition using microsoft
kinect®. In The 5th international conference on automation, robotics
and applications (pp. 100–103).
Carreira, J., & Zisserman, A. (2017). Quo vadis, action recognition? a new
model and the kinetics dataset. In proceedings of the ieee conference on
computer vision and pattern recognition (pp. 6299–6308).
De Smedt, Q., Wannous, H., & Vandeborre, J.-P. (2016). Skeleton-based dynamic
hand gesture recognition. In Proceedings of the ieee conference on
computer vision and pattern recognition workshops (pp. 1–9).
Donahue, J., Anne Hendricks, L., Guadarrama, S., Rohrbach, M., Venugopalan,
S., Saenko, K., & Darrell, T. (2015). Long-term recurrent convolutional
networks for visual recognition and description. In Proceedings of the ieee
conference on computer vision and pattern recognition (pp. 2625–2634).
Du, Y., Fu, Y., & Wang, L. (2015). Skeleton based action recognition with convolutional
neural network. In 2015 3rd iapr asian conference on pattern
recognition (acpr) (pp. 579–583).
Kim, J.-H., Thang, N. D., & Kim, T.-S. (2009). 3-d hand motion tracking
and gesture recognition using a data glove. In 2009 ieee international
symposium on industrial electronics (pp. 1013–1018).
Kopuklu, O., Kose, N., Gunduz, A., & Rigoll, G. (2019). Resource efficient
3d convolutional neural networks. In Proceedings of the ieee/cvf international
conference on computer vision workshops (pp. 0–0).
Li, G., Wu, H., Jiang, G., Xu, S., & Liu, H. (2018). Dynamic gesture recognition
in the internet of things. Ieee Access, 7, 23713–23724.
Liu, H., Wang, Y., Zhou, A., He, H., Wang, W., Wang, K., … Ma, H. (2020).
Real-time arm gesture recognition in smart home scenarios via millimeter
wave sensing. Proceedings of the ACM on interactive, mobile, wearable
and ubiquitous technologies, 4(4), 1–28.
Lu, W., Tong, Z., & Chu, J. (2016). Dynamic hand gesture recognition with leap
motion controller. IEEE Signal Processing Letters, 23(9), 1188–1192.
Lugaresi, C., Tang, J., Nash, H., McClanahan, C., Uboweja, E., Hays, M., … others
(2019). Mediapipe: A framework for building perception pipelines.
arXiv preprint arXiv:1906.08172.
Materzynska, J., Berger, G., Bax, I., & Memisevic, R. (2019). The jester
dataset: A large-scale video dataset of human gestures. In Proceedings of
the ieee/cvf international conference on computer vision workshops (pp.
0–0).
Molchanov, P., Yang, X., Gupta, S., Kim, K., Tyree, S., & Kautz, J. (2016). Online
detection and classification of dynamic hand gestures with recurrent
3d convolutional neural network. In Proceedings of the ieee conference
on computer vision and pattern recognition (pp. 4207–4215).
Pan, S. J., & Yang, Q. (2009). A survey on transfer learning. IEEE Transactions
on knowledge and data engineering, 22(10), 1345–1359.
Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once:
Unified, real-time object detection. In Proceedings of the ieee conference
on computer vision and pattern recognition (pp. 779–788).
Reifinger, S., Wallhoff, F., Ablassmeier, M., Poitschke, T., & Rigoll, G. (2007).
Static and dynamic hand-gesture recognition for augmented reality applications.
In Human-computer interaction. hci intelligent multimodal interaction
environments: 12th international conference, hci international
2007, beijing, china, july 22-27, 2007, proceedings, part iii 12 (pp. 728–
737).
Roh, M.-C., & Lee, S.-W. (2015). Human gesture recognition using a simplified
dynamic bayesian network. Multimedia Systems, 21(6), 557–568.
Shahroudy, A., Liu, J., Ng, T.-T., & Wang, G. (2016). Ntu rgb+ d: A large
scale dataset for 3d human activity analysis. In Proceedings of the ieee
conference on computer vision and pattern recognition (pp. 1010–1019).
Shan, C. (2010). Gesture control for consumer electronics. Multimedia Interaction
and Intelligent User Interfaces: Principles, Methods and Applications,
107–128.
Shin, S., & Kim, W.-Y. (2020). Skeleton-based dynamic hand gesture recognition
using a part-based gru-rnn for gesture-based interface. Ieee Access,
8, 50236–50243.
Simonyan, K., & Zisserman, A. (2014). Two-stream convolutional networks for
action recognition in videos. Advances in neural information processing
systems, 27.
Singh, A. K., Kumbhare, V. A., & Arthi, K. (2021). Real-time human pose
detection and recognition using mediapipe. In International conference
on soft computing and signal processing (pp. 145–154).
Sohn, M.-K., Lee, S.-H., Kim, D.-J., Kim, B., & Kim, H. (2012). A comparison
of 3d hand gesture recognition using dynamic time warping. In Proceedings
of the 27th conference on image and vision computing new zealand
(pp. 418–422).
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking
the inception architecture for computer vision. In Proceedings of the ieee
conference on computer vision and pattern recognition (pp. 2818–2826).
Thaman, B., Cao, T., & Caporusso, N. (2022). Face mask detection using
mediapipe facemesh. In 2022 45th jubilee international convention on
information, communication and electronic technology (mipro) (pp. 378–
382).
Tran, D., Bourdev, L., Fergus, R., Torresani, L., & Paluri, M. (2015). Learning
spatiotemporal features with 3d convolutional networks. In Proceedings
of the ieee international conference on computer vision (pp. 4489–4497).
Truong, V. N., Yang, C.-K., & Tran, Q.-V. (2016). A translator for american
sign language to text and speech. In 2016 ieee 5th global conference on
consumer electronics (pp. 1–2).
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,
… Polosukhin, I. (2017). Attention is all you need. Advances in neural
information processing systems, 30.
Wang, T., Qian, X., He, F., Hu, X., Cao, Y., & Ramani, K. (2021). Gesturar: An
authoring system for creating freehand interactive augmented reality applications.
In The 34th annual acm symposium on user interface software
and technology (pp. 552–567).
Wu, J., Sun, L., & Jafari, R. (2016). A wearable system for recognizing american
sign language in real-time using imu and surface emg sensors. IEEE
journal of biomedical and health informatics, 20(5), 1281–1290.
Xu, D., Chen, Y.-L., Lin, C., Kong, X., & Wu, X. (2012). Real-time dynamic
gesture recognition system based on depth perception for robot navigation.
In 2012 ieee international conference on robotics and biomimetics
(robio) (pp. 689–694).
Yang, L., Huang, J., Feng, T., Hong-An, W., & Guo-Zhong, D. (2019). Gesture
interaction in virtual reality. Virtual Reality & Intelligent Hardware, 1(1),
84–112.
Yang, Z., Li, Y., Chen, W., & Zheng, Y. (2012). Dynamic hand gesture recognition
using hidden markov models. In 2012 7th international conference
on computer science & education (iccse) (pp. 360–365).
Zhang, F., Bazarevsky, V., Vakunov, A., Tkachenka, A., Sung, G., Chang, C.-L.,
& Grundmann, M. (2020). Mediapipe hands: On-device real-time hand
tracking. arXiv preprint arXiv:2006.10214.
Zhang, W., Wang, J., & Lan, F. (2020). Dynamic hand gesture recognition
based on short-term sampling neural networks. IEEE/CAA Journal of
Automatica Sinica, 8(1), 110–120.
Zhang, X., Chen, X., Li, Y., Lantz, V., Wang, K., & Yang, J. (2011). A framework
for hand gesture recognition based on accelerometer and emg sensors.
IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems
and Humans, 41(6), 1064–1076.
Zhang, X., & Wu, X. (2019). Robotic control of dynamic and static gesture
recognition. In 2019 2nd world conference on mechanical engineering
and intelligent manufacturing (wcmeim) (pp. 474–478).
Zhou, B., Wang, P., Wan, J., Liang, Y., Wang, F., Zhang, D., … Jin, R. (2022).
Decoupling and recoupling spatiotemporal representation for rgb-d-based
motion recognition. In Proceedings of the ieee/cvf conference on computer
vision and pattern recognition (pp. 20154–20163). |