參考文獻 |
[1] 5G; NR; User Equipment (UE) radio transmission and reception; Part 1: Range 1 Standalone (3GPP TS 38.101-1 version 16.8.0 Release 16), ETSI TS 138 101-1 V16.8.0, September 2021.
[2] 5G; NR; User Equipment (UE) conformance specification; Radio transmission and reception; Part 2: Range 2 standalone (3GPP TS 38.521-2 version 16.7.0 Release 16), ETSI TS 138 521-2 V16.7.0, June 2021.
[3] F. Balteanu, H. Modi, Y. Choi, J. Lee, S. Drogi and S. Khesbak, "5G RF Front End Module Architectures for Mobile Applications," in 2019 49th European Microwave Conference (EuMC), Paris, France, 2019, pp. 252-255, doi: 10.23919/EuMC.2019.8910723.
[4] J. C. Mayeda, D. Y. C. Lie and J. Lopez, "A high efficiency fully-monolithic 2-stage C-band GaN power amplifier for 5G microcell applications," in 2018 Texas Symposium on Wireless and Microwave Circuits and Systems (WMCS), Waco, TX, USA, 2018, pp. 1-4, doi: 10.1109/WMCaS.2018.8400623.
[5] T. Qi and S. He, "Power Up Potential Power Amplifier Technologies for 5G Applications," IEEE Microwave Magazine, vol. 20, no. 6, pp. 89-101, June 2019, doi: 10.1109/MMM.2019.2904409.
[6] D. Y. C. Lie, J. C. Mayeda and J. Lopez, "Highly efficient 5G linear power amplifiers (PA) design challenges," in 2017 International Symposium on VLSI Design, Automation and Test (VLSI-DAT), Hsinchu, Taiwan, 2017, pp. 1-3, doi: 10.1109/VLSI-DAT.2017.7939653.
[7] Aymen Ghorbel, Ezgi Dogmus and Poshun Chiu, "RF GaN Market Broadens Its Appeal with an Appetite for GaN-on-Silicon," Yole Intelligence, Lyon, France, August 14, 2023.
[8] Gary Lerude, "Survey of RF GaN Fabs: Successful Commercialization and Global Supply," Microwave Journal, June 14, 2021.
[9] H. Qian, Q. Liu, J. Silva-Martinez and S. Hoyos, "A 35 dBm Output Power and 38 dB Linear Gain PA With 44.9% Peak PAE at 1.9 GHz in 40 nm CMOS," IEEE Journal of Solid-State Circuits, vol. 51, no. 3, pp. 587-597, March 2016, doi: 10.1109/JSSC.2015.2510026.
[10] H. Ahn et al., "A Fully Integrated −32-dB EVM Broadband 802.11abgn/ac PA With an External PA Driver in WLP 40-nm CMOS," IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 5, pp. 1870-1882, May 2019, doi: 10.1109/TMTT.2019.2899332.
[11] R. S. Nitesh, J. Rajendran, H. Ramiah and B. S. Yarman, "A 0.8 mm2 Sub-GHz GaAs HBT Power Amplifier for 5G Application Achieving 57.5% PAE and 28.5 dBm Maximum Linear Output Power," IEEE Access, vol. 7, pp. 158808-158819, 2019, doi: 10.1109/ACCESS.2019.2949369.
[12] Z. Ma, Z. Ma and K. Ma, "A 35 dBm PSAT and 41% PAE GaAs Power Amplifier With Series Distributed-Balun," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 70, no. 2, pp. 461-465, Feb. 2023, doi: 10.1109/TCSII.2022.3180072.
[13] R. S. Pengelly, S. M. Wood, J. W. Milligan, S. T. Sheppard and W. L. Pribble, "A Review of GaN on SiC High Electron-Mobility Power Transistors and MMICs," IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 6, pp. 1764-1783, June 2012, doi: 10.1109/TMTT.2012.2187535.
[14] R. Ma, K. H. Teo, S. Shinjo, K. Yamanaka and P. M. Asbeck, "A GaN PA for 4G LTE-Advanced and 5G: Meeting the Telecommunication Needs of Various Vertical Sectors Including Automobiles, Robotics, Health Care, Factory Automation, Agriculture, Education, and More," IEEE Microwave Magazine, vol. 18, no. 7, pp. 77-85, Nov.-Dec. 2017, doi: 10.1109/MMM.2017.2738498.
[15] Y. -S. Lee, M. -W. Lee, S. -H. Kam and Y. -H. Jeong, "A High-Efficiency GaN-Based Power Amplifier Employing Inverse Class-E Topology," IEEE Microwave and Wireless Components Letters, vol. 19, no. 9, pp. 593-595, Sept. 2009, doi: 10.1109/LMWC.2009.2027095.
[16] H. Taleb-Alhagh Nia and V. Nayyeri, "A 0.85–5.4 GHz 25-W GaN Power Amplifier," IEEE Microwave and Wireless Components Letters, vol. 28, no. 3, pp. 251-253, March 2018, doi: 10.1109/LMWC.2018.2794818.
[17] L. -H. Huang and H. -K. Chiou, "An Ultra-compact 14.9-W X-Band GaN MMIC Power Amplifier," in 2020 IEEE Asia-Pacific Microwave Conference (APMC), Hong Kong, Hong Kong, 2020, pp. 257-259, doi: 10.1109/APMC47863.2020.9331325.
[18] D. Gustafsson, K. Andersson, A. Leidenhed, M. Malmstrom, A. Rhodin and T. Wegeland, "A packaged hybrid doherty PA for microwave links," in 2016 46th European Microwave Conference (EuMC), London, UK, 2016, pp. 1437-1440, doi: 10.1109/EuMC.2016.7824624.
[19] M. Ayad, E. Byk, G. Neveux, M. Camiade and D. Barataud, "Single and dual input packaged 5.5–6.5GHz, 20W, Quasi-MMIC GaN-HEMT Doherty Power Amplifier," in 2017 IEEE MTT-S International Microwave Symposium (IMS), Honololu, HI, USA, 2017, pp. 114-117, doi: 10.1109/MWSYM.2017.8058804.
[20] R. Quaglia, M. D. Greene, M. J. Poulton and S. C. Cripps, "Design and characterization of a 1.7–2.7 GHz quasi-MMIC Doherty power amplifier," in 2017 IEEE MTT-S International Microwave Symposium (IMS), Honololu, HI, USA, 2017, pp. 771-773, doi: 10.1109/MWSYM.2017.8058689.
[21] R. Quaglia, M. D. Greene, M. J. Poulton and S. C. Cripps, "A 1.8–3.2-GHz Doherty Power Amplifier in Quasi-MMIC Technology," IEEE Microwave and Wireless Components Letters, vol. 29, no. 5, pp. 345-347, May 2019, doi: 10.1109/LMWC.2019.2904883.
[22] R. -J. Liu et al., "A 30-W GaN Quasi-MMIC Doherty Power Amplifier Based on All-Distributed Inductors Load Network," in 2021 51st European Microwave Conference (EuMC), London, United Kingdom, 2022, pp. 946-949, doi: 10.23919/EuMC50147.2022.9784325.
[23] Y. Cao, X. -W. Zhu, R. -J. Liu and Q. Dong, "Design of an S-band quasi-MMIC Power Amplifier," in 2021 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Nanjing, China, 2021, pp. 1-3, doi: 10.1109/ICMMT52847.2021.9618627.
[24] W. H. Doherty, "A New High Efficiency Power Amplifier for Modulated Waves," Proceedings of the Institute of Radio Engineers, vol. 24, no. 9, pp. 1163-1182, Sept. 1936, doi: 10.1109/JRPROC.1936.228468.
[25] F. H. Raab, "Class-F power amplifiers with maximally flat waveforms," IEEE Transactions on Microwave Theory and Techniques, vol. 45, no. 11, pp. 2007-2012, Nov. 1997, doi: 10.1109/22.644215.
[26] S. C. Cripps, P. J. Tasker, A. L. Clarke, J. Lees and J. Benedikt, "On the Continuity of High Efficiency Modes in Linear RF Power Amplifiers," IEEE Microwave and Wireless Components Letters, vol. 19, no. 10, pp. 665-667, Oct. 2009, doi: 10.1109/LMWC.2009.2029754.
[27] V. Carrubba et al., "The Continuous Class-F Mode Power Amplifier," in 40th European Microwave Conference, Paris, France, 2010, pp. 1674-1677, doi: 10.23919/EUMC.2010.5616309.
[28] P. J. Tasker, V. Carrubba, P. Wright, J. Lees, J. Benedikt and S. Cripps, "Wideband PA Design: The "Continuous" Mode of Operation," in 2012 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), La Jolla, CA, USA, 2012, pp. 1-4, doi: 10.1109/CSICS.2012.6340118.
[29] Ralf Ohmberger, "Understanding Datasheet Thermal Parameters and IC Junction Temperatures," Monolithic Power Systems (MPS), Kirkland, Washington, USA, Rep. Article #0057, May 2023.
[30] C. -H. Li, C. -L. Ko, C. -N. Kuo, M. -C. Kuo and D. -C. Chang, "A Low-Cost DC-to-84-GHz Broadband Bondwire Interconnect for SoP Heterogeneous System Integration," IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 12, pp. 4345-4352, Dec. 2013, doi: 10.1109/TMTT.2013.2281966.
[31] C. -H. Chan, C. -C. Chou and H. -R. Chuang, "Integrated Packaging Design of Low-Cost Bondwire Interconnection for 60-GHz CMOS Vital-Signs Radar Sensor Chip With Millimeter-Wave Planar Antenna," IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 8, no. 2, pp. 177-185, Feb. 2018, doi: 10.1109/TCPMT.2017.2782342.
[32] M. Umar, M. Laabs, N. Neumann and D. Plettemeier, "Bondwire Model and Compensation Network for 60 GHz Chip-to-PCB Interconnects," IEEE Antennas and Wireless Propagation Letters, vol. 20, no. 11, pp. 2196-2200, Nov. 2021, doi: 10.1109/LAWP.2021.3108499.
[33] Sivabalan Mohan, "Thermal Comparison of FR-4 and Insulated Metal Substrate PCB for GaN Inverter," Texas Instruments (TI), Dallas, Texas, USA, Rep. TIDA030, June 2019.
[34] D. Kang, D. Kim, Y. Cho, B. Park, J. Kim and B. Kim, "Design of Bandwidth-Enhanced Doherty Power Amplifiers for Handset Applications," IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 12, pp. 3474-3483, Dec. 2011, doi: 10.1109/TMTT.2011.2171042.
[35] S. Jee et al., "Asymmetric Broadband Doherty Power Amplifier Using GaN MMIC for Femto-Cell Base-Station," IEEE Transactions on Microwave Theory and Techniques, vol. 63, no. 9, pp. 2802-2810, Sept. 2015, doi: 10.1109/TMTT.2015.2442973.
[36] G. Lv, W. Chen, L. Chen and Z. Feng, "A Fully Integrated C-band GaN MMIC Doherty Power Amplifier with High Gain and High Efficiency for 5G Application," in 2019 IEEE MTT-S International Microwave Symposium (IMS), Boston, MA, USA, 2019, pp. 560-563, doi: 10.1109/MWSYM.2019.8701103.
[37] R. Quaglia, M. D. Greene, M. J. Poulton and S. C. Cripps, "Design and characterization of a 1.7–2.7 GHz quasi-MMIC Doherty power amplifier," in 2017 IEEE MTT-S International Microwave Symposium (IMS), Honololu, HI, USA, 2017, pp. 771-773, doi: 10.1109/MWSYM.2017.8058689.
[38] M. Ayad, E. Byk, G. Neveux, M. Camiade and D. Barataud, "Single and dual input packaged 5.5–6.5GHz, 20W, Quasi-MMIC GaN-HEMT Doherty Power Amplifier," in 2017 IEEE MTT-S International Microwave Symposium (IMS), Honololu, HI, USA, 2017, pp. 114-117, doi: 10.1109/MWSYM.2017.8058804.
[39] R. Quaglia, M. D. Greene, M. J. Poulton and S. C. Cripps, "A 1.8–3.2-GHz Doherty Power Amplifier in Quasi-MMIC Technology," IEEE Microwave and Wireless Components Letters, vol. 29, no. 5, pp. 345-347, May 2019, doi: 10.1109/LMWC.2019.2904883.
[40] Chiou, Hwann-Kaeo, Hsin-Chieh Lin, and Da-Chiang Chang, "High-Efficiency and Cost-Effective 10 W Broadband Continuous Class-J Mode Quasi-MMIC Power Amplifier Design Utilizing 0.25 μm GaN/SiC and GaAs IPD Technology for 5G NR n77 and n78 Bands," Electronics, vol. 12, no. 16, pp. 3494, Aug. 2023.
[41] L. C. Nunes, P. M. Cabral and J. C. Pedro, "AM/AM and AM/PM Distortion Generation Mechanisms in Si LDMOS and GaN HEMT Based RF Power Amplifiers," IEEE Transactions on Microwave Theory and Techniques, vol. 62, no. 4, pp. 799-809, April 2014, doi: 10.1109/TMTT.2014.2305806.
[42] G. Gonzalez, Microwave Transistor Amplifiers: Analysis and Design, 2nd ed. Pearson, London, 1996, pp.240-243.
[43] S. Saxena, K. Rawat and P. Roblin, "Continuous Class-B/J Power Amplifier Using a Nonlinear Embedding Technique," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 64, no. 7, pp. 837-841, July 2017, doi: 10.1109/TCSII.2016.2633300.
[44] A. Alizadeh, S. Hassanzadehyamchi and A. Medi, "Integrated Output Matching Networks for Class–J/J−1 Power Amplifiers," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 8, pp. 2921-2934, Aug. 2019, doi: 10.1109/TCSI.2019.2912007.
[45] G. Nikandish, R. B. Staszewski and A. Zhu, "Design of Highly Linear Broadband Continuous Mode GaN MMIC Power Amplifiers for 5G," IEEE Access, vol. 7, pp. 57138-57150, 2019, doi: 10.1109/ACCESS.2019.2914563.
[46] C. Florian, R. Cignani, D. Niessen and A. Santarelli, "A C-Band AlGaN-GaN MMIC HPA for SAR," IEEE Microwave and Wireless Components Letters, vol. 22, no. 9, pp. 471-473, Sept. 2012, doi: 10.1109/LMWC.2012.2212238.
[47] S. May, D. Maassen, F. Rautschke and G. Boeck, "Two stage 4–8 GHz, 5 W GaN-HEMT amplifier," in 2017 47th European Microwave Conference (EuMC), Nuremberg, Germany, 2017, pp. 136-139, doi: 10.23919/EuMC.2017.8230818.
[48] B. Zhao, C. Sanabria and T. Hon, "A 2-Stage S-Band 2W CW GaN MMIC Power Amplifier in an Overmold QFN Package," in 2022 IEEE Texas Symposium on Wireless and Microwave Circuits and Systems (WMCS), Waco, TX, USA, 2022, pp. 1-5, doi: 10.1109/WMCS55582.2022.9866273.
[49] Hsin-Chieh Lin, Kuan-Chou Chen, and Hwann-Kaeo Chiou, "An 8.1-W, 50.9% efficient continuous Class-F mode power amplifier developed using 0.25-μm GaN/SiC technology for 5G NR n79 band," IEICE Electronics Express, vol. 20, no. 8, pp. 1-6, Apr. 2023.
[50] N. -C. Kuo et al., "DC/RF Hysteresis in Microwave pHEMT Amplifier Induced by Gate Current—Diagnosis and Elimination," IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 11, pp. 2919-2930, Nov. 2011, doi: 10.1109/TMTT.2011.2160966.
[51] T. A. Winslow, "A Novel CAD Probe for Bidirectional Impedance and Stability Analysis," in 2018 IEEE/MTT-S International Microwave Symposium - IMS, Philadelphia, PA, USA, 2018, pp. 1032-1035, doi: 10.1109/MWSYM.2018.8439210.
[52] N. Tuffy, L. Guan, A. Zhu and T. J. Brazil, "A Simplified Broadband Design Methodology for Linearized High-Efficiency Continuous Class-F Power Amplifiers," IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 6, pp. 1952-1963, June 2012, doi: 10.1109/TMTT.2012.2187534.
[53] C. -H. Lin and H. -Y. Chang, "A High Efficiency Broadband Class-E Power Amplifier Using a Reactance Compensation Technique," IEEE Microwave and Wireless Components Letters, vol. 20, no. 9, pp. 507-509, Sept. 2010, doi: 10.1109/LMWC.2010.2056675.
[54] B. Liu, M. Mao, C. C. Boon, P. Choi, D. Khanna and E. A. Fitzgerald, "A Fully Integrated Class-J GaN MMIC Power Amplifier for 5-GHz WLAN 802.11ax Application," IEEE Microwave and Wireless Components Letters, vol. 28, no. 5, pp. 434-436, May 2018, doi: 10.1109/LMWC.2018.2811338.
[55] G. Nikandish, R. B. Staszewski and A. Zhu, "Broadband Fully Integrated GaN Power Amplifier With Embedded Minimum Inductor Bandpass Filter and AM–PM Compensation," IEEE Solid-State Circuits Letters, vol. 2, no. 9, pp. 159-162, Sept. 2019, doi: 10.1109/LSSC.2019.2927855.
[56] G. R. Nikandish, A. Nasri, A. Yousefi, A. Zhu and R. B. Staszewski, "A Broadband Fully Integrated Power Amplifier Using Waveform Shaping Multi-Resonance Harmonic Matching Network," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 69, no. 1, pp. 2-15, Jan. 2022, doi: 10.1109/TCSI.2021.3095708. |