參考文獻 |
[1] "<1120612-111年國人死因統計結果-分析.pdf>," doi: https://www.mohw.gov.tw/cp-16-74869-1.html.
[2] U. Dirnagl, C. Iadecola, and M. A. Moskowitz, "Pathobiology of ischaemic stroke: an integrated view," Trends in neurosciences, vol. 22, no. 9, pp. 391-397, 1999, doi: https://doi.org/10.1016/S0166-2236(99)01401-0.
[3] H. B. Van der Worp and J. van Gijn, "Acute ischemic stroke," New England Journal of Medicine, vol. 357, no. 6, pp. 572-579, 2007, doi: https://doi.org/10.1056/NEJMcp1917030.
[4] P. Myint, E. Staufenberg, and K. Sabanathan, "Post-stroke seizure and post-stroke epilepsy," Postgraduate medical journal, vol. 82, no. 971, pp. 568-572, 2006, doi: https://doi.org/10.1136/pgmj.2005.041426.
[5] J. Burn, M. Dennis, J. Bamford, P. Sandercock, D. Wade, and C. Warlow, "Epileptic seizures after a first stroke: the Oxfordshire Community Stroke Project," Bmj, vol. 315, no. 7122, pp. 1582-1587, 1997, doi: https://doi.org/10.1136/bmj.315.7122.1582.
[6] E. Beghi et al., "Recommendation for a definition of acute symptomatic seizure," Epilepsia, vol. 51, no. 4, pp. 671-675, 2010, doi: https://doi.org/10.1111/j.1528-1167.2009.02285.x.
[7] J. Zelano, M. Holtkamp, N. Agarwal, S. Lattanzi, E. Trinka, and F. Brigo, "How to diagnose and treat post‐stroke seizures and epilepsy," Epileptic Disorders, vol. 22, no. 3, pp. 252-263, 2020, doi: https://doi.org/10.1684/epd.2020.1159.
[8] S. Y. Kwon et al., "Risk factors for seizures after intracerebral hemorrhage: Ethnic/Racial Variations of Intracerebral Hemorrhage (ERICH) Study," Clinical neurology and neurosurgery, vol. 192, p. 105731, 2020, doi: https://doi.org/10.1016/j.clineuro.2020.105731.
[9] E. Haapaniemi et al., "The CAVE score for predicting late seizures after intracerebral hemorrhage," Stroke, vol. 45, no. 7, pp. 1971-1976, 2014, doi: https://doi.org/10.1161/STROKEAHA.114.004686.
[10] N.-F. Chi et al., "Development and validation of risk score to estimate 1-year late poststroke epilepsy risk in ischemic stroke patients," Clinical Epidemiology, pp. 1001-1011, 2018, doi: https://doi.org/10.2147/CLEP.S168169.
[11] M. Galovic et al., "Prediction of late seizures after ischaemic stroke with a novel prognostic model (the SeLECT score): a multivariable prediction model development and validation study," The Lancet Neurology, vol. 17, no. 2, pp. 143-152, 2018, doi: https://doi.org/10.1016/S1474-4422(17)30404-0.
[12] A. Strzelczyk, A. Haag, H. Raupach, G. Herrendorf, H. M. Hamer, and F. Rosenow, "Prospective evaluation of a post-stroke epilepsy risk scale," Journal of neurology, vol. 257, pp. 1322-1326, 2010, doi: https://doi.org/10.1007/s00415-010-5520-9.
[13] S. Yamada et al., "Investigation of poststroke epilepsy (INPOSE) study: a multicenter prospective study for prediction of poststroke epilepsy," Journal of Neurology, vol. 267, no. 11, pp. 3274-3281, 2020, doi: https://doi.org/10.1007/s00415-020-09982-2.
[14] 陳龍 et al., "2021 年台灣腦中風學會與台灣癲癇醫學會之中風後癲癇治療指引," 台灣中風醫誌, vol. 3, no. 4, pp. 167-194, 2021, doi: https://doi.org/10.6318/FJS.202112_3(4).0001.
[15] B. Tettenborn, "The SeLECT score: development and validation of a novel prognostic model to predict late seizures after ischemic stroke," doi: https://doi.org/10.1016/s1474-4422(17)30404-0.
[16] R. Bender, T. Augustin, and M. Blettner, "Generating survival times to simulate Cox proportional hazards models," Statistics in medicine, vol. 24, no. 11, pp. 1713-1723, 2005, doi: https://doi.org/10.1002/sim.2059.
[17] S. Derksen and H. J. Keselman, "Backward, forward and stepwise automated subset selection algorithms: Frequency of obtaining authentic and noise variables," British Journal of Mathematical and Statistical Psychology, vol. 45, no. 2, pp. 265-282, 1992, doi: https://doi.org/10.1111/j.2044-8317.1992.tb00992.x.
[18] D. C. Hesdorffer, E. K. Benn, G. D. Cascino, and W. A. Hauser, "Is a first acute symptomatic seizure epilepsy? Mortality and risk for recurrent seizure," Epilepsia, vol. 50, no. 5, pp. 1102-1108, 2009, doi: https://doi.org/10.1111/j.1528-1167.2008.01945.x.
[19] T. K. Kim, "T test as a parametric statistic," Korean journal of anesthesiology, vol. 68, no. 6, p. 540, 2015, doi: https://doi.org/10.4097%2Fkjae.2015.68.6.540.
[20] M. L. McHugh, "The chi-square test of independence," Biochemia medica, vol. 23, no. 2, pp. 143-149, 2013, doi: https://doi.org/10.11613/BM.2013.018.
[21] T.-C. Chen, Y.-Y. Chen, P.-Y. Cheng, and C.-H. Lai, "The incidence rate of post-stroke epilepsy: a 5-year follow-up study in Taiwan," Epilepsy research, vol. 102, no. 3, pp. 188-194, 2012, doi: https://doi.org/10.1016/j.eplepsyres.2012.06.003.
[22] N. S. Graham, S. Crichton, M. Koutroumanidis, C. D. Wolfe, and A. G. Rudd, "Incidence and associations of poststroke epilepsy: the prospective South London Stroke Register," Stroke, vol. 44, no. 3, pp. 605-611, 2013, doi: https://doi.org/10.1161/STROKEAHA.111.000220.
[23] J. M. Bland and D. G. Altman, "Survival probabilities (the Kaplan-Meier method)," Bmj, vol. 317, no. 7172, pp. 1572-1580, 1998, doi: https://doi.org/10.1136/bmj.317.7172.1572.
[24] R. Arntz et al., "Post-stroke epilepsy in young adults: a long-term follow-up study," PloS one, vol. 8, no. 2, p. e55498, 2013, doi: https://doi.org/10.1371/journal.pone.0055498.
[25] J. Guo et al., "Statin treatment reduces the risk of poststroke seizures," Neurology, vol. 85, no. 8, pp. 701-707, 2015, doi: https://doi.org/10.1212/WNL.0000000000001814.
[26] P. F. Hsieh, H. Tung, and C.-H. Lin, "Statin effects on post-stroke epilepsy and mortality–Taiwan population-based study," Neurological Research, vol. 42, no. 5, pp. 422-429, 2020, doi: https://doi.org/10.1080/01616412.2020.1735821.
[27] V. Baliyan, C. J. Das, R. Sharma, and A. K. Gupta, "Diffusion weighted imaging: technique and applications," World journal of radiology, vol. 8, no. 9, p. 785, 2016, doi: https://doi.org/10.4329/wjr.v8.i9.785.
[28] C.-C. Chou et al., "Strategic infarct location for post-stroke seizure," NeuroImage: Clinical, vol. 35, p. 103069, 2022, doi: https://doi.org/10.1016/j.nicl.2022.103069.
[29] Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," nature, vol. 521, no. 7553, pp. 436-444, 2015, doi: https://doi.org/10.1038/nature14539.
[30] J. Gu et al., "Recent advances in convolutional neural networks," Pattern recognition, vol. 77, pp. 354-377, 2018, doi: https://doi.org/10.1016/j.patcog.2017.10.013.
[31] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, 1998, doi: https://doi.org/10.1109/5.726791.
[32] O. Russakovsky et al., "Imagenet large scale visual recognition challenge," International journal of computer vision, vol. 115, pp. 211-252, 2015, doi: https://doi.org/10.1007/s11263-015-0816-y.
[33] K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition," arXiv preprint arXiv:1409.1556, 2014, doi: https://doi.org/10.48550/arXiv.1409.1556.
[34] C. Szegedy et al., "Going deeper with convolutions," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 1-9, doi: https://doi.org/10.1109/CVPR.2015.7298594.
[35] K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770-778, doi: https://doi.org/10.1109/CVPR.2016.90.
[36] V. Kumar et al., "Radiomics: the process and the challenges," Magnetic resonance imaging, vol. 30, no. 9, pp. 1234-1248, 2012, doi: https://doi.org/10.1016/j.mri.2012.06.010.
[37] R. J. Gillies, P. E. Kinahan, and H. Hricak, "Radiomics: images are more than pictures, they are data," Radiology, vol. 278, no. 2, pp. 563-577, 2016, doi: https://doi.org/10.1148/radiol.2015151169.
[38] G. Kunapuli et al., "A decision-support tool for renal mass classification," Journal of Digital Imaging, vol. 31, pp. 929-939, 2018, doi: https://doi.org/10.1007/s10278-018-0100-0.
[39] A. M. Faux et al., "AlphaSim: software for breeding program simulation," The plant genome, vol. 9, no. 3, p. plantgenome2016.02.0013, 2016, doi: https://doi.org/10.3835/plantgenome2016.02.0013.
[40] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, "Imagenet: A large-scale hierarchical image database," in 2009 IEEE conference on computer vision and pattern recognition, 2009: Ieee, pp. 248-255, doi: https://doi.org/10.1109/CVPR.2009.5206848.
[41] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet classification with deep convolutional neural networks," Communications of the ACM, vol. 60, no. 6, pp. 84-90, 2017, doi: https://doi.org/10.1145/3065386.
[42] C. M. Bishop, Neural networks for pattern recognition. Oxford university press, 1995.
[43] J. Chen, M. Zhou, D. Zhang, H. Huang, and F. Zhang, "Quantification of water inflow in rock tunnel faces via convolutional neural network approach," Automation in Construction, vol. 123, p. 103526, 2021, doi: https://doi.org/10.1016/j.autcon.2020.103526.
[44] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, "Rethinking the inception architecture for computer vision," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 2818-2826, doi: https://doi.org/10.1109/CVPR.2016.308.
[45] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, "Inception-v4, inception-resnet and the impact of residual connections on learning," in Proceedings of the AAAI conference on artificial intelligence, 2017, vol. 31, no. 1, doi: https://doi.org/10.1609/aaai.v31i1.11231.
[46] B. Zoph and Q. V. Le, "Neural architecture search with reinforcement learning," arXiv preprint arXiv:1611.01578, 2016, doi: https://doi.org/10.48550/arXiv.1611.01578.
[47] L. P. Kaelbling, M. L. Littman, and A. W. Moore, "Reinforcement learning: A survey," Journal of artificial intelligence research, vol. 4, pp. 237-285, 1996, doi: https://doi.org/10.1613/jair.301.
[48] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, "Learning transferable architectures for scalable image recognition," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 8697-8710, doi: https://doi.org/10.1109/CVPR.2018.00907.
[49] R. Caruana, S. Lawrence, and C. Giles, "Overfitting in neural nets: Backpropagation, conjugate gradient, and early stopping," Advances in neural information processing systems, vol. 13, 2000, doi: https://doi.org/10.1109/ijcnn.2000.857823.
[50] Y. Tang, "Deep learning using linear support vector machines," arXiv preprint arXiv:1306.0239, 2013, doi: https://doi.org/10.48550/arXiv.1306.0239.
[51] X. Dong, Z. Yu, W. Cao, Y. Shi, and Q. Ma, "A survey on ensemble learning," Frontiers of Computer Science, vol. 14, pp. 241-258, 2020, doi: https://doi.org/10.1007/s11704-019-8208-z.
[52] J. Li et al., "Feature Selection: A Data Perspective," ACM Comput. Surv., vol. 50, no. 6, p. Article 94, 2017, doi: https://doi.org/10.1145/3136625.
[53] A. Jović, K. Brkić, and N. Bogunović, "A review of feature selection methods with applications," in 2015 38th international convention on information and communication technology, electronics and microelectronics (MIPRO), 2015: Ieee, pp. 1200-1205, doi: https://doi.org/10.1109/MIPRO.2015.7160458. |