博碩士論文 111521090 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:66 、訪客IP:13.59.181.246
姓名 簡士豪(Shih-Hao Chien)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 新型修正式柵欄軌跡結合擴增狀態估測 滑模回授與多自由度Bouc-Wen遲滯前饋補償 控制器給予壓電平台快速精確追蹤
(ESO-based Sliding Mode Feedback Control with Multi-DoF Bouc-Wen Hysteresis Feedforward Compensation for Modified Raster Scan Trajectory for Fast and Precise Tracking of Piezoelectric Stage)
相關論文
★ 基於適應性徑向基神經網路與非奇異快速終端滑模控制結合線上延遲估測器應用於二軸機械臂運動軌跡精確控制★ 新型三維光學影像量測系統之設計與控制
★ 新型雙紐線軌跡設計與進階控制實現壓電平台快速與精確定位★ 基於深度座標卷積與自動編碼器給予行人實時路徑及終點位置精確預測
★ 修正式雙紐線軌跡結合自適應積分終端滑動模態控制與逆模型遲滯補償實現壓電平台精確追蹤★ 以粒子群最佳化-倒傳遞類神經網路-比例積分微分控制器和影像金字塔轉換融合方法實現三維光學顯微影像系統
★ 以局部熵亂度分布與模板匹配方法結合自適應ORB特徵提取達成多影像精確拼接★ 低扭矩機械手臂機構開發與脈寬調變進階控制器設計
★ 使用時域門控與梅森增益公式構建四埠夾具的散射參數表徵★ 通過強化學習與積分滑模動量觀測器實現機器手臂的強健近佳PD控制策略
★ 基於類代理注意力特徵融合模型的聯合 實體關係抽取方法★ 結合點雲密度熵計算方法和運動回復結構在虛幻引擎中進行影像三維點雲模型及渲染重建
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-7-1以後開放)
摘要(中) 壓電平台已被廣泛地使用在高解析度的量測儀器系統,其可以達到微米或奈米級別的定位精度。然而壓電平台所使用的致動器是由壓電材料所構成,此材料特性可以對電壓變化量做出形變或對形變量產生電壓,但它具有高度非線性的特徵(如遲滯、耦合等),進而導致控制上的困難。除此之外,壓電平台的追蹤軌跡設計也是影響最終控制成效的一大關鍵。為了解決上述提到的困難,本篇論文提出了一個複合式的控制架構,由多自由度Bouc-Wen前饋控制器及擴增狀態估測有限時間滑模回授所組成,意在解決非線性及干擾相關的難題,並透過穩定性證明展示其有效性。此外,傳統的柵欄式掃描軌跡設計,其成分包含三角波的訊號源,此訊號容易引起機械系統的高頻共振。有鑑於此,本篇論文提出一種修正式的柵欄式軌跡,將原先的三角波替換為順滑轉換的路徑形式,來避免不必要的高頻訊號產生,藉此減緩高頻共振問題。
最後,透過對系統一系列的模擬與實驗結果進行比較,可展現本論文提出的控制架構及軌跡設計的優異性。
摘要(英) The piezoelectric stage is widely used in high-resolution measurement systems for exploring and manipulating the micro-/nano- scales world. The stage’s actuator is made of piezoelectric material, which can deform its shape when a voltage is applied (and vice versa). However, this material suffers from nonlinearities, such as hysteresis and cross-coupling. Besides, the tracking trajectory design affects the overall performance and output image qualities of the AFM system. To overcome the problem, first, we combine a Bouc-Wen feedforward control scheme with an extended state observer-based finite-time dynamics sliding mode feedback control to address these nonlinearities. Second, we proposed a modified raster trajectory that replaces a sharp turning point with a smooth-out transition to minimize the unwanted high-frequency oscillation phenomenon as much as possible. A series of simulation and experimental results were compared to demonstrate the performance of the proposed trajectory and control method.
關鍵字(中) ★ 壓電平台
★ 修正式柵欄軌跡
★ Bouc-Wen模型
★ 擴增狀態估測器
★ 滑模控制
關鍵字(英) ★ High-precision measurement system
★ Piezoelectric stage
★ Modified raster trajectory
★ Bouc-Wen model
★ Extended state observer
★ Finite-time sliding mode control
論文目次 摘要…………………………………………………………………………………….....i
致謝……………………………………………………………………………………...iii
List of Figures …………………………………………………………………….……..vi
List of TABLES xii
Explanation of Symbols xiii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Literature Review 2
1.2.1 Scanning Trajectory Categories 3
1.2.2 Control Strategies for Piezoelectric Actuator 7
1.3 Contribution 13
1.4 Thesis Organization 14
Chapter 2 Preliminary 16
2.1 Characteristics of Piezoelectric Actuator 16
2.1.1 Piezoelectric Effect 16
2.1.2 Hysteresis Phenomenon 17
2.1.3 Cross-Coupling Phenomenon 19
2.2 Particle Swarm Optimization (PSO) 21
2.3 Feedforward Control 23
2.3.1 Bouc-Wen Model 24
2.4 Feedback Control 25
2.4.1 Sliding Mode Control 25
2.4.2 Extended State Observer 27
Chapter 3 Modified Raster Scan Trajectory 29
3.1 Modified Raster Algorithm 29
3.1.1 Conventional Raster Scan Trajectory 29
3.1.2 Modified Raster Scan Trajectory 31
3.2 Comparison of Mapping Methods 40
Chapter 4 Controller Design 42
4.1 Scanning Trajectory of X- and Y-axis 42
4.2 ESO-Based FTDSMC with Bouc-Wen Model Hysteresis Compensator 43
4.2.1 Problem Formulation 44
4.2.2 Control Algorithm 47
4.2.3 Stability Analysis 52
Chapter 5 Simulation Results 59
5.1 Simulation Setting 59
5.2 Simulation of Bouc-Wen Compensation 66
5.3 Modified Raster Trajectory Tracking Results 69
5.4 Sine Wave Trajectory Tracking Results 80
Chapter 6 Experimental Results 91
6.1 Experiment Setup 91
6.2 Bouc-Wen Hysteresis Compensation 94
6.3 Proposed Trajectory Tracking Results 97
Chapter 7 Conclusion 117
Reference ………………………………………………………………………….119
Appendix ………………………………………………………………………….123
參考文獻 [1] X. Wang, V. Pommier-Budinger, A. Reysset, and Y. Gourinat, “Simultaneous compensation of hysteresis and creep in a single piezoelectric actuator by open-loop control for quasi-static space active optics applications,” Control Engineering Practice, vol. 33, pp. 48-62, 2014.
[2] A. Hales and X. Jiang, “A review of piezoelectric fans for low energy cooling of power electronics,” Applied Energy, vol. 215, pp. 321-337, 2018.
[3] G.-Y. Gu, C.-X. Li, L.-M. Zhu, and C.-Y. Su, “Modeling and Identification of Piezoelectric-Actuated Stages Cascading Hysteresis Nonlinearity With Linear Dynamics,” IEEE/ASME Transactions on Mechatronics, vol. 21, no. 3, pp. 1792-1797, 2016.
[4] G.-Y. Gu, L.-M. Zhu, C.-Y. Su, H. Ding, and S. Fatikow, “Modeling and Control of Piezo-Actuated Nanopositioning Stages: A Survey,” IEEE Transactions on Automation Science and Engineering, vol. 13, no. 1, pp. 313-332, 2016.
[5] L. Li, J. Huang, S. S. Aphale, and L. Zhu, “A smoothed raster scanning trajectory based on acceleration-continuous B-spline transition for high-speed Atomic Force Microscopy,” IEEE/ASME Transactions on Mechatronics, vol. 26, pp. 24-32, 2021.
[6] J.-W. Wu, Y.-T. Lin, Y.-T. Lo, W.-C. Liu, and L.-C. Fu, “Lissajous Hierarchical Local Scanning to Increase the Speed of Atomic Force Microscopy,” IEEE Transactions on Nanotechnology, vol. 14, no. 5, pp. 810-819, 2015.
[7] Z. Feng, J. Ling, M. Ming, W. Liang, K. K. Tan, and X. Xiao, “Signal-Transformation-Based Repetitive Control of Spiral Trajectory for Piezoelectric Nanopositioning Stages,” IEEE/ASME Transactions on Mechatronics, vol. 25, no. 3, pp. 1634-1645, 2020.
[8] Y. Sun and J. H. Pang, “AFM image reconstruction for deformation measurements by digital image correlation,” Nanotechnology, vol. 17, no. 4, pp. 933-939, 2006.
[9] I. A. Mahmood, S. O. R. Moheimani, and B. Bhikkaji, “A New Scanning Method for Fast Atomic Force Microscopy,” IEEE Transactions on Nanotechnology, vol. 10, no. 2, pp. 203-216, 2011.
[10] Y. K. Yong, A. Bazaei, and S. O. R. Moheimani, “Video-Rate Lissajous-Scan Atomic Force Microscopy,” IEEE Transactions on Nanotechnology, vol. 13, no. 1, pp. 85-93, 2014.
[11] N. Nikooienejad, A. Alipour, M. Maroufi, and S. O. R. Moheimani, “Video-Rate Non-Raster AFM Imaging With Cycloid Trajectory,” IEEE Transactions on Control Systems Technology, vol. 28, no. 2, pp. 436-447, 2020.
[12] L. Cheng, W. Liu, C. Yang, T. Huang, Z.-G. Hou, and M. Tan, “A Neural-Network-Based Controller for Piezoelectric-Actuated Stick–Slip Devices,” IEEE Transactions on Industrial Electronics, vol. 65, no. 3, pp. 2598-2607, 2018.
[13] W. Liu, L. Cheng, Z.-G. Hou, J. Yu, and M. Tan, “An Inversion-free Predictive Controller for Piezoelectric Actuators Based on A Dynamic Linearized Neural Network Model,” IEEE/ASME Transactions on Mechatronics, vol. 21, no. 1, pp. 214-226, 2015.
[14] L. Li, W.-W. Huang, X. Wang, and L. Zhu, “Dual-Notch-Based Repetitive Control for Tracking Lissajous Scan Trajectories With Piezo-Actuated Nanoscanners,” IEEE Transactions on Instrumentation and Measurement, vol. 71, pp. 1-12, 2022.
[15] M. Ghafarian, B. Shirinzadeh, A. Al-Jodah, and T. K. Das, “Adaptive Fuzzy Sliding Mode Control for High-Precision Motion Tracking of a Multi-DOF Micro/Nano Manipulator,” IEEE Robotics and Automation Letters, vol. 5, no. 3, pp. 4313-4320, 2020.
[16] J. Han, “From PID to Active Disturbance Rejection Control,” IEEE Transactions on Industrial Electronics, vol. 56, no. 3, pp. 900-906, 2009.
[17] D. Bombuwela, K. Rsetam, A. H. M. Sayem, Z. Cao, and Z. Man, “ESO-based repetitive control for rejecting periodic and aperiodic disturbances in piezoelectric actuators,” 11th Asian Control Conference (ASCC), pp. 1464-1469, 2017.
[18] N. Qi, Y. Fang, X. Ren, and Y. Wu, “Varying-Gain Modeling and Advanced DMPC Control of an AFM System,” IEEE Transactions on Nanotechnology, vol. 14, no. 1, pp. 82-92, 2015.
[19] C.-X. Li, G.-Y. Gu, M.-J. Yang, and L.-M. Zhu, “High-Speed Tracking of a Nanopositioning Stage Using Modified Repetitive Control,” IEEE Transactions on Automation Science and Engineering, vol. 14, no. 3, pp. 1467-1477, 2017.
[20] D. Habineza, M. Rakotondrabe, and Y. Le Gorrec, “Bouc–Wen Modeling and Feedforward Control of Multivariable Hysteresis in Piezoelectric Systems: Application to a 3-DoF Piezotube Scanner,” IEEE Transactions on Control Systems Technology, vol. 23, no. 5, pp. 1797-1806, 2015.
[21] M. Maaspuro, “Piezoelectric oscillating cantilever fan for thermal management of electronics and LEDs — A review,” Microelectronics Reliability, vol. 63, pp. 342-353, 2016.
[22] M. Goldfarb and N. Celanovic, “Modeling piezoelectric stack actuators for control of micromanipulation,” IEEE Control Systems Magazine, vol. 17, no. 3, pp. 69-79, 1997.
[23] H. Habibullah, “30 Years of atomic force microscopy: Creep, hysteresis, cross-coupling, and vibration problems of piezoelectric tube scanners,” Measurement, vol. 159, pp. 107776, 2020.
[24] J. Gan and X. Zhang, “A review of nonlinear hysteresis modeling and control of piezoelectric actuators,” AIP Advances, vol. 9, no. 4, pp. 040702, 2019.
[25] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,” Proceedings of the Sixth International Symposium on Micro Machine and Human Science, pp. 39-43, 1995.
[26] Y. Shi and R. C. Eberhart, “Empirical study of particle swarm optimization,” Proceedings of the 1999 Congress on Evolutionary Computation-CEC99, vol. 3, pp. 1945-1950, 1999.
[27] M. Rakotondrabe, “Bouc–Wen Modeling and Inverse Multiplicative Structure to Compensate Hysteresis Nonlinearity in Piezoelectric Actuators,” IEEE Transactions on Automation Science and Engineering, vol. 8, no. 2, pp. 428-431, 2011.
[28] Y. Kawai and K. Uchiyama, “Modified integral sliding mode controller with saturation function,” pp. 358-362, 2016.
[29] P. Korondi, H. Hashimoto, and G. Sziebig, “Sliding Sector Design for Nonlinear Systems,” IFAC Proceedings Volumes, vol. 41, no. 2, pp. 3556-3561, 2008.
[30] W. Zhang, Z. Wang, T. Raïssi, Y. Wang, and Y. Shen, “A state augmentation approach to interval fault estimation for descriptor systems,” European Journal of Control, vol. 51, pp. 19-29, 2020.
[31] C.-X. Li, G.-Y. Gu, L.-M. Zhu, and C.-Y. Su, “Odd-harmonic repetitive control for high-speed raster scanning of piezo-actuated nanopositioning stages with hysteresis nonlinearity,” Sensors and Actuators A: Physical, vol. 244, pp. 95-105, 2016.
[32] S. Yu, Y. Feng, and X. Yang, “Extended state observer–based fractional order sliding-mode control of piezoelectric actuators,” Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, vol. 235, no. 1, pp. 39-51, 2020.
[33] D. Habineza, M. Rakotondrabe, and Y. L. Gorrec, “Multivariable Generalized Bouc-Wen modeling, identification and feedforward control and its application to multi-DoF piezoelectric actuators,” IFAC Proceedings Volumes, vol. 47, no. 3, pp. 10952-10958, 2014.
[34] A. Charalampakis, and C. Dimou, “Identification of Bouc–Wen hysteretic systems using particle swarm optimization,” Computers & structures, vol. 88, no. 21-22, pp. 1197-1205, 2010.
[35] Q. Qin, G. Gao, and J. Zhong, “Finite-Time Adaptive Extended State Observer-Based Dynamic Sliding Mode Control for Hybrid Robots,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 69, no. 9, pp. 3784-3788, 2022.
[36] G. Zhiqiang, “Scaling and bandwidth-parameterization based controller tuning,” Proceedings of the American Control Conference, pp. 4989-4996, 2003.
[37] W. Shen and C. Shen, “An extended state observer-based control design for electro-hydraulic position servomechanism,” Control Engineering Practice, vol. 109, pp. 104730, 2021.
[38] V. Anh Tuan, T. N. Truong, H.-J. Kang, and M. Van, “A Robust Observer-Based Control Strategy for n-DOF Uncertain Robot Manipulators with Fixed-Time Stability,” Sensors, vol. 21, 2021.
[39] Z. Qing, L. Q. Gaol, and G. Zhiqiang, “On stability analysis of active disturbance rejection control for nonlinear time-varying plants with unknown dynamics,” pp. 3501-3506, 2007.
[40] B. Zhou, “On asymptotic stability of linear time-varying systems,” Automatica, vol. 68, pp. 266-276, 2016.
[41] Z.-L. Zhao and B.-Z. Guo, “Extended state observer for uncertain lower triangular nonlinear systems,” Systems & Control Letters, vol. 85, pp. 100-108, 2015.
[42] H. K. Khalil, Control of nonlinear systems: Prentice Hall, New York, NY, 2002.
[43] N. Bof, R. Carli, and L. Schenato, “Lyapunov theory for discrete time systems,” [Online]. Available: https://arxiv.org/abs/1809.05289, 2018.
[44] H. Yiguang, W. Jiankui, and C. Daizhan, “Adaptive finite-time control of nonlinear systems with parametric uncertainty,” IEEE Transactions on Automatic Control, vol. 51, no. 5, pp. 858-862, 2006.
[45] H. Navvabi and A. H. D. Markazi, “Position control of Stewart manipulator using a new extended adaptive fuzzy sliding mode controller and observer (E-AFSMCO),” Journal of the Franklin Institute, vol. 355, no. 5, pp. 2583-2609, 2018.
指導教授 吳俊緯(Jim-Wei Wu) 審核日期 2024-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明