博碩士論文 111522123 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:43 、訪客IP:3.141.198.113
姓名 王大瑋(Ta-Wei Wang)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 使用時序圖卷積網絡進行環境異常檢測
(Environmental Anomaly Detection using Temporal Graph Convolutional Networks)
相關論文
★ PXGen:生成模型的事後可解釋方法★ 多機器人在樹結構上最小化最大延遲巡邏調度
★ 隨機性巡邏排程對抗具有不同攻擊時長的敵手
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-7-31以後開放)
摘要(中) 環保犯罪偵測對環境保護來說是一個重要議題,涉及任意棄置和掩埋廢 棄物所引發的環境污染問題,以及利用不實申報廢棄物賺取非法利益等。過去常使用基本的質量平衡、統計資訊分析或機器學習來辨別可疑資料,以判定是否存在不實申報。然而,若採用質量平衡和數值報表等數學統計方法進 行資料分析與檢驗,需要針對目標廠商進行數據檢查,可能會遺漏潛在的可疑事業群。此外,一旦廠商被判刑或處以罰鍰,他們未來很可能會造假資料以躲避質量平衡的稽查。而機器學習模型訓練則常忽略時間訊息,並可能缺乏上下游關係的考量。
為了解決上述問題,我們在本篇論文中提出一種使用圖形卷積網路(GCNs)進行環境異常檢測的新方法。在實驗中,我們提出兩種圖形卷積網路模型的架構,並進一步比較兩者的效能,分析影響預測結果的可能要素。本篇論文首次導入深度學習來構建環保資料的上下游關係,並保留時間資訊,以進行環保犯罪偵測。我們的主要貢獻如下:首先,我們是首個利用GCNs檢測環境資料異常的研究;其次,我們使用無向鄰居傳播演算法將複雜的資料建構成圖;第三,我們進行了包含和不包含時間因素的 GCNs的對比分析。
摘要(英) Detecting environmental crimes is a crucial issue for environmental protection, involving problems related to illegal disposal and burial of waste, resulting in environmental pollution, as well as earning illegal profits through false reporting of waste. Traditionally, basic mass balance, statistical information analysis, or machine learning have been used to identify suspicious data to determine whether false reporting exists. However, using mathematical and statistical methods like mass balance and numerical reports for data analysis and inspection requires checking data for target enterprises, which may miss potentially suspicious enterprises. Furthermore, once an enterprise is convicted or fined, they are likely to falsify data in the future to evade mass balance inspections. Machine learning model training often ignores temporal information and may lack consideration of upstream and downstream relationships.
To address these issues, in this paper, we presented a novel approach for environmental anomaly detection using Graph Convolutional Networks (GCNs). In our experiments, we propose the architectures of two graph convolutional network models, compare their performance, and analyze the possible factors influencing prediction results. This paper is the first to introduce deep learning to construct upstream and downstream relationships in environmental data, retaining temporal information for environmental crime detection. Our main contributions are the following: firstly, we are the pioneers in utilizing GCNs for detecting anomalies in environmental data; secondly, we constructed complex data into a graph using the Undirected Neighbor Propagation algorithm; and thirdly, we conducted a comparative analysis between GCNs with and without temporal considerations.
關鍵字(中) ★ 圖神經網路
★ 圖卷積網路
★ 環境異常檢測
★ 深度學習
關鍵字(英) ★ Graph Neural Network
★ Graph Convolutional Network
★ Environmental Anomaly Detection
★ Deep Learning
論文目次 Chinese Abstract ………………………………………………………………… i
English Abstract ………………………………………………………………… ii
Table of Contents ……………………………………………………………… iii
List of Figures ………………………………………………………………… iv
List of Tables …………………………………………………………………… v
1 Introduction ………………………………………………………………… 1
1.1 Motivation …………………………………………………………… 1
1.2 Objective …………………………………………………………… 2
1.3 Organization ………………………………………………………… 2
2 Related Works ……………………………………………………………… 4
2.1 Anomaly Detection in Environmental Data ………………………… 4
2.2 GCN Based Node Property Prediction ……………………………… 4
2.3 GCN Based Time Series Prediction ………………………………… 5
3 Graph Construction ………………………………………………………… 6
3.1 Data Source ………………………………………………………… 6
3.1.1 Statistics Tables of Database …………………………………… 6
3.1.2 Waste Type ……………………………………………………… 9
3.1.3 Enterprise Type ………………………………………………… 9
3.2 Graph Design ………………………………………………………… 11
3.2.1 Business Enterprise as The Center ……………………………… 11
3.2.2 Reuse Enterprise as The Center ………………………………… 12
3.2.3 Graph Construction ……………………………………………… 13
3.3 Ground Truth ………………………………………………………… 14
3.3.1 Law of Conservation of Mass …………………………………… 14
3.3.2 LLM Analysis from Environmental Enforcement Management System … 15
4 Proposed Approaches ……………………………………………………… 17
4.1 Graph Convolutional Network (GCN) ……………………………… 17
4.1.1 Input Format …………………………………………………… 17
4.1.2 Architecture …………………………………………………… 19
4.2 Graph Convolutional Recurrent Network (GCRN) ………………… 20
4.2.1 Input Format …………………………………………………… 20
4.2.2 Architecture …………………………………………………… 21
5 Experiments ……………………………………………………………… 23
5.1 Implementation Details ……………………………………………… 23
5.2 Experimental Results ……………………………………………… 24
6 Conclusion and Future Work ……………………………………………… 27
Bibliography …………………………………………………………………… 28
參考文獻 [1] Guo, H. N., Wu, S. B., Tian, Y. J., Zhang, J., & Liu, H. T. (2021). Application of machine learning methods for the prediction of organic solid waste treatment and recycling processes: A review. Bioresource technology, 319, 124114.
[2] Russo, S., Lürig, M., Hao, W., Matthews, B., & Villez, K. (2020). Active learning for anomaly detection in environmental data. Environmental Modelling & Software, 134, 104869.
[3] Sami, K. N., Amin, Z. M. A., & Hassan, R. (2020). Waste management using machine learning and deep learning algorithms. International Journal on Perceptive and Cognitive Computing, 6(2), 97-106.
[4] Majchrowska, S., Mikołajczyk, A., Ferlin, M., Klawikowska, Z., Plantykow, M. A., Kwasigroch, A., & Majek, K. (2022). Deep learning-based waste detection in natural and urban environments. Waste Management, 138, 274-284.
[5] Russo, S., Besmer, M. D., Blumensaat, F., Bouffard, D., Disch, A., Hammes, F., ... & Villez, K. (2021). The value of human data annotation for machine learning based anomaly detection in environmental systems. Water Research, 206, 117695.
[6] Mao, W. L., Chen, W. C., Fathurrahman, H. I. K., & Lin, Y. H. (2022). Deep learning networks for real-time regional domestic waste detection. Journal of Cleaner Production, 344, 131096.
[7] Abdu, H., & Noor, M. H. M. (2022). A survey on waste detection and classification using deep learning. IEEE Access, 10, 128151-128165.
[8] Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907.
[9] Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K. I., & Jegelka, S. (2018, July). Representation learning on graphs with jumping knowledge networks. In International conference on machine learning (pp. 5453-5462). PMLR.
[10] Li, G., Xiong, C., Thabet, A., & Ghanem, B. (2020). Deepergcn: All you need to train deeper gcns. arXiv preprint arXiv:2006.07739.
[11] Chen, M., Wei, Z., Huang, Z., Ding, B., & Li, Y. (2020, November). Simple and deep graph convolutional networks. In International conference on machine learning (pp. 1725-1735). PMLR.
[12] Wang, Y., Jin, J., Zhang, W., Yu, Y., Zhang, Z., & Wipf, D. (2021). Bag of tricks for node classification with graph neural networks. arXiv preprint arXiv:2103.13355.
[13] Kong, K., Li, G., Ding, M., Wu, Z., Zhu, C., Ghanem, B., ... & Goldstein, T. (2022). Robust optimization as data augmentation for large-scale graphs. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 60-69).
[14] Luo, Y., Shi, L., & Wu, X. M. (2024). Classic GNNs are Strong Baselines: Reassessing GNNs for Node Classification. arXiv preprint arXiv:2406.08993.
[15] Bai, L., Yao, L., Li, C., Wang, X., & Wang, C. (2020). Adaptive graph convolutional recurrent network for traffic forecasting. Advances in neural information processing systems, 33, 17804-17815.
[16] Seo, Y., Defferrard, M., Vandergheynst, P., & Bresson, X. (2018). Structured sequence modeling with graph convolutional recurrent networks. In Neural Information Processing: 25th International Conference, ICONIP 2018, Siem Reap, Cambodia, December 13-16, 2018, Proceedings, Part I 25 (pp. 362-373). Springer International Publishing.
指導教授 楊晧琮(Hao-Tsung Yang) 審核日期 2024-8-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明