博碩士論文 111521053 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:49 、訪客IP:18.217.152.233
姓名 陳品儒(Ping-Ju Chen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 三相T-type整流器於不平衡電網下主動輸出電壓不平衡控制及直流端電壓漣波抑制
(DC-Bus Voltage Ripple Suppression and Active Control of Output Voltage Imbalance in Three-Phase T-Type Rectifiers under Unbalanced Grid)
相關論文
★ 微電網逆變器之智慧型控制策略★ 高頻高電流之雙向直流-直流轉換器設計
★ 應用於三相轉換器之被動元件在線監測與無電流感測三相整流器之系統控制★ 結合零序回授補償與無通訊之載波同步於並聯雙向交直流轉換器之環流抑制
★ 三相Vienna整流器無電壓感測線性非時變直接功率控制★ 具柔切三相六開關反流器之併網及新型垂降控制策略
★ 基於無電流感測三相Vienna整流器之新型電壓判斷成分注入法於平衡及不平衡直流鏈電壓之應用★ 基於虛擬阻抗孤島交流微電網功率分配及其電壓與頻率恢復控制策略之發展
★ 應用於具儲能混合交直流微電網之雙向互連轉換器電壓控制策略★ 具柔切三相分源逆變器與直交流電壓控制策略研製
★ 考慮不平衡電源之三相整流器線性化直接 功率控制之研製★ 考慮電網失真不平衡下三相反流器直接功 率控制之研製
★ 三相電網形成反流器之阻抗估算策略與新型諧波電壓抑制之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 三相三階層AC/DC轉換器中T-type整流器具有高效率且較低的功率開關應力,本文控制T-type整流器的中性點電壓,使直流端電壓可作為兩組獨立型的輸出電壓源,並消除中性點電流擾動,實現高效能的電源供應。在實際應用中,需要考量不同電網條件下整流器的運行,本文在不平衡電網下,研究功率流在電網與整流器之間的轉換,並提出新型控制策略。所提方法為基於虛擬電容使消除整流器電感漣波功率所造成的整流器功率振盪,並建立匹配擴充功率理論的改良型電壓調變直接功率控制架構,以實現三相T-type整流器電流無失真和高功率因數,並能提供穩定且準確的直流輸出電壓,與過往文獻相比,所提策略無需鎖相迴路和系統交流端參數,因此有優異的動態性能和參數不匹配之穩健性。本文T-type整流器控制架構中應用啟動電流抑制方法,並重新設計緩啟動電阻,精準限制整流器啟動過程中出現的湧浪電流且降低硬體成本。本文所提控制策略最終透過模擬軟體進行結果分析,並實作建置一台2.4 kW三相T-type整流器驗證所提控制策略的有效性和正確性。
摘要(英) In three-phase three-level AC/DC converters, the T-type rectifier stands out for its high ef-ficiency and lower power switching stress. This paper focuses on controlling the neutral point voltage of the T-type rectifier, enabling the DC side voltage to serve as two independent output voltage sources, and eliminating neutral point current disturbances to achieve high-performance power supply. Practical applications necessitate the consideration of the rectifier′s operation un-der various grid conditions. This study examines the power flow between the grid and the recti-fier in unbalanced grid conditions and proposes a novel control strategy. The proposed method is based on virtual capacitance to eliminate the power oscillation caused by the rectifier inductor ripple power and establishes an improved voltage modulation direct power control framework that matches the extended power theory. This enables the three-phase T-type rectifier to achieve distortion-free current and high power factor, while providing a stable and accurate DC output voltage. Compared to previous literature, the proposed strategy does not require a phase-locked loop or AC-side system parameters, thus exhibiting excellent dynamic performance and robust-ness against parameter mismatches. The control framework of the T-type rectifier includes a startup current suppression method and a redesigned soft start resistor to precisely limit inrush current during the rectifier′s startup process. The proposed control strategy is analyzed through simulation and verified by implementing a 2.4 kW three-phase T-type rectifier, demonstrating its effectiveness and validity.
關鍵字(中) ★ T-type整流器
★ 中性點電壓控制
★ 三相不平衡電網
★ 輸出電壓不平衡
★ 直流端電壓漣波抑制
★ 直接功率控制
關鍵字(英) ★ T-type rectifier
★ neutral point voltage control
★ three-phase unbalanced grid
★ output voltage imbalance
★ DC side voltage ripple suppression
★ direct power control
論文目次 摘要 i
Abstract ii
致謝 iv
目錄 v
圖目錄 viii
表目錄 xxvii
第一章 緒論 1
1-1 研究背景與動機 1
1-2 文獻回顧 2
1-3 本論文之貢獻 5
1-4 論文架構概述 7
第二章 三相T-type整流器電路及控制架構 9
2-1 前言 9
2-2 三相T-type整流器架構及工作原理 10
2-2-1三相T-type工作原理 10
2-2-2三相T-type整流器開關訊號載波脈波寬度調變 14
2-3 三相整流器電壓導向直接功率控制[4] 15
2-3-1三相T-type整流器建模 15
2-3-2三相T-type整流器電壓調節直接功率控制器設計 17
2-4 中性點(Neutral Point)電壓控制[14] 20
2-4-1平均中性點電流(inp)於中性點電壓擾動情形分析 20
2-4-2中性點電壓擾動優化成分注入法 22
2-5 三相T-type整流器限制湧浪電流緩啟動 30

第三章 三相不平衡電網下整流器控制策略 34
3-1 前言 34
3-2 不平衡電網下基於直接功率控制之升壓電感功率補償[21] 35
3-2-1 三相整流器擴充瞬時功率理論模型 35
3-2-2 不平衡電網下電感瞬時功率 37
3-2-3 不平衡電網下輸出功率漣波消除 40
3-3 不平衡電網下基於電壓導向控制之虛擬電容電流前饋[20] 42
3-3-1 不平衡電網下的直流端電壓漣波原因和整流器功率模型 42
3-3-2 無需功率模型之直流端輸出電壓漣波抑制方法 43
第四章 所提三相不平衡電網下新型虛擬電容功率前饋於T-type整流器控制策略 49
4-1 前言 49
4-2 所提新型虛擬電容功率前饋補償法 50
4-2-1 直流端輸出電壓二次漣波成因 50
4-2-2 虛擬電容功率模型 52
4-3 三相不平衡電網下改良型電壓調節直接功率控制 56
4-3-1 三相不平衡電網下T-type整流器建模 56
4-3-2 三相不平衡電網下T-type整流器改良型直接功率控制器設計 58
第五章 模擬結果 64
5-1 前言 64
5-2 模擬電路與元件參數 65
5-3 三相不平衡電網下直接功率控制模擬結果 70
5-3-1 傳統瞬時功率理論下直接功率控制架構 70
5-3-2 擴充瞬時功率理論[22]下改良型直接功率控制架構 73
5-4 三相不平衡電網電壓下輸出電壓二次漣波抑制方法模擬結果 75
5-4-1 傳統不平衡電網下基於電壓導向控制之虛擬電容電流前饋法[20] 75
5-4-2 傳統不平衡電網下基於直接功率控制之升壓電感功率補償法[21] 80
5-4-3 所提不平衡電網下基於直接功率控制之新型虛擬電容功率前饋策略 84
5-4-4 不平衡電網下輸出電壓二次漣波抑制方法比較模擬結果 88
5-5 所提不平衡電網下新型T-type整流器控制策略主動輸出不平衡模擬結果 98
第六章 實作電路結果 104
6-1 硬體電路設倍與微控制器介紹 104
6-2 三相不平衡電網電壓下輸出電壓二次漣波抑制方法實作結果 111
6-3 不平衡電網下輸出電壓二次漣波抑制方法比較實作結果 112
6-4 所提不平衡電網下新型T-type整流器控制策略主動輸出不平衡實作結果 120
第七章 結論與未來展望 124
7-1 論文內容總結 124
7-2未來展望 125
參考文獻 126
參考文獻 [1] B. Long, J. Zhang, W. Mao, J. Rodríguez, J. M. Guerrero and K. T. Chong, "Impartial Sequen-tial Model Predictive Control of Parallel T-Type Rectifiers for Power Sharing and Circulating Current Elimination," in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 11, no. 4, pp. 3937-3948, Aug. 2023.
[2] W. Ding, H. Qiu, B. Duan, X. Xing, N. Cui and C. Zhang, "A Novel Segmented Com-ponent Injection Scheme to Minimize the Oscillation of DC-Link Voltage Under Balanced and Unbalanced Conditions for Vienna Rectifier," in IEEE Transactions on Power Elec-tronics, vol. 34, no. 10, pp. 9536-9551, Oct. 2019.
[3] Y. Zhang, J. Liu, H. Yang and J. Gao, "Direct Power Control of Pulsewidth Modulated Rectifiers Without DC Voltage Oscillations Under Unbalanced Grid Conditions," in IEEE Transactions on Industrial Electronics, vol. 65, no. 10, pp. 7900-7910, Oct. 2018.
[4] Y. Gui, M. Li, J. Lu, S. Golestan, J. M. Guerrero and J. C. Vasquez, "A Voltage Modulated DPC Approach for Three-Phase PWM Rectifier," in IEEE Transactions on Industrial Electronics, vol. 65, no. 10, pp. 7612-7619, Oct. 2018.
[5] A. Sharida, S. Bayhan and H. Abu-Rub, "Adaptive Control Strategy for Three-Phase Three-Level T-Type Rectifier Based on Online Disturbance Estimation and Compensa-tion," in IEEE Access, vol. 11, pp. 40967-40977, 2023.
[6] J. -S. Lee and K. -B. Lee, "Time-Offset Injection Method for Neutral-Point AC Ripple Voltage Reduction in a Three-Level Inverter," in IEEE Transactions on Power Electronics, vol. 31, no. 3, pp. 1931-1941, March 2016.
[7] P. Zhang, X. Wu, W. Xu, J. Liu, J. Qi and A. Yang, "A Compensation Component Injec-tion Method Based on a Hybrid Modulation for Minimizing the Neutral-Point Voltage Os-cillations in a Five-Level Flying Capacitor Rectifier," in IEEE Transactions on Power Electronics, vol. 37, no. 3, pp. 2705-2718, March 2022.
[8] P. Karamanakos, K. Pavlou and S. Manias, "An Enumeration-Based Model Predictive Control Strategy for the Cascaded H-Bridge Multilevel Rectifier," in IEEE Transactions on Industrial Electronics, vol. 61, no. 7, pp. 3480-3489, July 2014.
[9] S. Xu, J. Zhang, Y. Huang and J. Jatskevich, "Dynamic Average-Value Modeling of Three-Level T-Type Grid-Connected Converter System," in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 7, no. 4, pp. 2428-2442, Dec. 2019.
[10] J. Chen, C. Zhang, X. Xing and A. Chen, "A Fault-Tolerant Control Strategy for T-Type Three-Level Rectifier With Neutral Point Voltage Balance and Loss Reduction," in IEEE Transactions on Power Electronics, vol. 35, no. 7, pp. 7492-7505, July 2020.
[11] G. Iwanski, S. Wodyk and T. Luszczyk, "Control of a Three-Phase Power Converter Connected to Unbalanced Power Grid in a Non-Cartesian Oblique Frame," in IEEE Transactions on Power Electronics, vol. 37, no. 1, pp. 183-195, Jan. 2022.
[12] B. Xu, K. Liu, X. Ran, Q. Huai and S. Yang, "Model Predictive Duty Cycle Control for Three-Phase Vienna Rectifiers With Reduced Neutral-Point Voltage Ripple Under Unbal-anced DC Links," in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 10, no. 5, pp. 5578-5590, Oct. 2022.
[13] W. Ding, C. Zhang, F. Gao, B. Duan and H. Qiu, "A Zero-Sequence Component Injection Modulation Method With Compensation for Current Harmonic Mitigation of a Vienna Rectifier," in IEEE Transactions on Power Electronics, vol. 34, no. 1, pp. 801-814, Jan. 2019.
[14] Y. -H. Liao, B. -R. Xie and J. -S. Liu, "A Novel Voltage Judgment Component Injection Scheme for Balanced and Unbalanced DC-link Voltages in Three-Phase Vienna Rectifi-ers," in IEEE Transactions on Industrial Electronics, doi: 10.1109/TIE.2024.3370943.
[15] C. Wang and Y. Li, "Analysis and Calculation of Zero-Sequence Voltage Considering Neutral-Point Potential Balancing in Three-Level NPC Converters," in IEEE Transactions on Industrial Electronics, vol. 57, no. 7, pp. 2262-2271, July 2010.
[16] J. -S. Yim, S. -K. Sul, B. -H. Bae, N. R. Patel and S. Hiti, "Modified Current Control Schemes for High-Performance Permanent-Magnet AC Drives With Low Sampling to Operating Frequency Ratio," in IEEE Transactions on Industry Applications, vol. 45, no. 2, pp. 763-771, March-april 2009.
[17] G. Mirzaeva, G. C. Goodwin, B. P. McGrath, C. Teixeira and M. E. Rivera, "A General-ized MPC Framework for the Design and Comparison of VSI Current Controllers," in IEEE Transactions on Industrial Electronics, vol. 63, no. 9, pp. 5816-5826, Sept. 2016.
[18] Hong-Seok Song and Kwanghee Nam, "Dual current control scheme for PWM converter under unbalanced input voltage conditions," in IEEE Transactions on Industrial Electronics, vol. 46, no. 5, pp. 953-959, Oct. 1999.
[19] M. Reyes, P. Rodriguez, S. Vazquez, A. Luna, R. Teodorescu and J. M. Carrasco, "En-hanced Decoupled Double Synchronous Reference Frame Current Controller for Unbal-anced Grid-Voltage Conditions," in IEEE Transactions on Power Electronics, vol. 27, no. 9, pp. 3934-3943, Sept. 2012.
[20] T. Song, Y. Zhang, F. Gao, X. Zhu, J. Shan and Z. Kong, "Power Model Free Voltage Ripple Suppression Method of Three-Phase PWM Rectifier Under Unbalanced Grid," in IEEE Transactions on Power Electronics, vol. 37, no. 11, pp. 13799-13807, Nov. 2022.
[21] Y. Zhang, J. Jiao, J. Liu and J. Gao, "Direct Power Control of PWM Rectifier With Feed-forward Compensation of DC-Bus Voltage Ripple Under Unbalanced Grid Conditions," in IEEE Transactions on Industry Applications, vol. 55, no. 3, pp. 2890-2901, May-June 2019.
[22] Yongsug Suh and T. A. Lipo, "Modeling and analysis of instantaneous active and reactive power for PWM AC/DC converter under generalized unbalanced network," in IEEE Transactions on Power Delivery, vol. 21, no. 3, pp. 1530-1540, July 2006.
[23] Y. Zhang and C. Qu, "Model Predictive Direct Power Control of PWM Rectifiers Under Unbalanced Network Conditions," in IEEE Transactions on Industrial Electronics, vol. 62, no. 7, pp. 4011-4022, July 2015.
[24] M. Kumar, L. Huber and M. M. Jovanović, "Startup Procedure for DSP-Controlled Three-Phase Six-Switch Boost PFC Rectifier," in IEEE Transactions on Power Electronics, vol. 30, no. 8, pp. 4514-4523, Aug. 2015.
[25] D. Lu, Y. Yu, M. Wei, X. Li, H. Hu and Y. Xing, "Startup Control to Eliminate Inrush Current for Star-Connected Cascaded H-Bridge STATCOM," in IEEE Transactions on Power Electronics, vol. 37, no. 5, pp. 5995-6008, May 2022.
[26] S. Lyu, L. Zheng, C. Li, J. Song and M. Tian, "A Start-up Inrush Current Suppression Method Based on Dual Parameters Soft-start for PWM Rectifier," 2019 IEEE 3rd Con-ference on Energy Internet and Energy System Integration (EI2), Changsha, China, 2019.
[27] Y. Jeong, M. -H. Park and G. -W. Moon, "High-Efficiency Zero-Voltage-Switching To-tem-Pole Bridgeless Rectifier With Integrated Inrush Current Limiter Circuit," in IEEE Transactions on Industrial Electronics, vol. 67, no. 9, pp. 7421-7429, Sept. 2020.
[28] S. Pugliese, G. Buticchi, R. A. Mastromauro, M. Andresen, M. Liserre and S. Stasi, "Soft-Start Procedure for a Three-Stage Smart Transformer Based on Dual-Active Bridge and Cascaded H-Bridge Converters," in IEEE Transactions on Power Electronics, vol. 35, no. 10, pp. 11039-11052, Oct. 2020.
[29] S. Bayhan and H. Komurcugil, "Sliding-Mode Control Strategy for Three-Phase Three-Level T-Type Rectifiers With DC Capacitor Voltage Balancing," in IEEE Access, vol. 8, pp. 64555-64564, 2020.
[30] M. Lak, B. -R. Chuang and T. -L. Lee, "A Common-Mode Voltage Elimination Method With Active Neutral Point Voltage Balancing Control for Three-Level T-Type Inverter," in IEEE Transactions on Industry Applications, vol. 58, no. 6, pp. 7499-7514, Dec. 2022.
[31] 羊宣銘(2013)。電網同步之鎖相迴路控制器的設計與分析〔碩士論文,國立交通大學〕。華藝線上圖書館。https://doi.org/10.6842/NCTU.2013.00383
[32] P. Rodríguez, A. Luna, I. Candela, R. Mujal, R. Teodorescu and F. Blaabjerg, "Multireso-nant Frequency-Locked Loop for Grid Synchronization of Power Converters Under Dis-torted Grid Conditions," in IEEE Transactions on Industrial Electronics, vol. 58, no. 1, pp. 127-138, Jan. 2011.
指導教授 廖益弘(Yi-Hung Liao) 審核日期 2024-8-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明