博碩士論文 111521021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:116 、訪客IP:3.141.32.252
姓名 葉承韋(Cheng-Wei Yeh)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 三相電網形成反流器之阻抗估算策略與新型諧波電壓抑制之研製
(Development and Implementation of Impedance Estimation Strategy and Harmonic Voltage Suppression for Three-phase Grid-Forming Inverters)
相關論文
★ 微電網逆變器之智慧型控制策略★ 高頻高電流之雙向直流-直流轉換器設計
★ 應用於三相轉換器之被動元件在線監測與無電流感測三相整流器之系統控制★ 結合零序回授補償與無通訊之載波同步於並聯雙向交直流轉換器之環流抑制
★ 三相Vienna整流器無電壓感測線性非時變直接功率控制★ 具柔切三相六開關反流器之併網及新型垂降控制策略
★ 基於無電流感測三相Vienna整流器之新型電壓判斷成分注入法於平衡及不平衡直流鏈電壓之應用★ 基於虛擬阻抗孤島交流微電網功率分配及其電壓與頻率恢復控制策略之發展
★ 應用於具儲能混合交直流微電網之雙向互連轉換器電壓控制策略★ 具柔切三相分源逆變器與直交流電壓控制策略研製
★ 考慮不平衡電源之三相整流器線性化直接 功率控制之研製★ 考慮電網失真不平衡下三相反流器直接功 率控制之研製
★ 三相T-type整流器於不平衡電網下主動輸出電壓不平衡控制及直流端電壓漣波抑制
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 為因應再生能源發電佔比的提升,本文主要針對獨立運行的交流孤島微電網架構,側重研究於如何抑制責任分界點端的電壓諧波的成分。現今之儀器設備所屬的類別大多屬於非線性負載,當微電網架構運行於孤島模式中,系統引入非線性負載時,甚至連接至微電網的距離增加等情況下,將會造成責任分界點端的電壓失真,此時使用者端所接受到的電壓信號品質將產生大幅降低。
為了減少微電網輸出電壓諧波成分,本文基於垂降控制架構提出了一種應用於三相諧波抑制的垂降控制策略。當分散式再生能源電能轉換器輸出功率時,於初級控制下估算轉換器與責任分界點之間的線路阻抗,並設計負虛擬阻抗的方式以消除線路阻抗對電壓諧波分量產生的影響,使得微電網於孤島模式引入非線性負載的情形下能具備減少微電網電壓諧波輸出的效果。隨後,透過加入諧波垂降控制法則於本地控制器中,將進一步抑制垂降控制所輸出的電壓諧波分量,此時於孤島模式運行下的微電網所產生的責任分界點電壓可維持輸出穩定供給,並減少責任分界點的電壓總諧波失真量,以提高整體孤島微電網的可靠性。
本文所提的線路阻抗估算策略主要適用於以下類別:於強電網、弱電網、弱電網加入非線性負載以及孤島下加入非線性負載造成電壓電流失真的情形。然而,一般於弱電網和孤島下加入非線性負載的情境下將添增計算難度,這將使得阻抗估算性能受到影響。於此本文的估算策略使用了一種基於二階廣義積分正交信號產生器的帶通濾波器,利用基本波實現線路阻抗估算的策略,使得轉換器將不受限於嚴峻的環境中影響其估算阻抗的能力。
摘要(英) Due to the increasing of the renewable energy power generation, this thesis is mainly focuses on the standalone operating architecture of the AC microgrids, which focuses on how to reduce the output voltage harmonics of the point of common coupling (PCC). Most of today′s instruments and equipments are belong to the category of nonlinear loads, when the microgrid system is operating in the standalone mode which including the nonlinear loads, or even when the distance between the converter and PCC of the microgrid increases, the output voltage of the PCC will result in large distortion, at this time the quality of the voltage received by the user will be significantly increased.
In order to reduce the microgrid voltage harmonics of PCC, this thesis proposes a harmonic suppression control strategy based on the fundamental droop controller architecture. When the Distributed Energy Resources (DER) converter outputs power under grid-connected mode, the line impedance between the converter and the PCC can be estimated under primary control. Futhermore, the negative virtual impedance method is used to eliminate the influence of the line impedance on the output voltage harmonics. This method enables the microgrid to reduce the output voltage harmonics within the nonlinear loads. Subsequently, by adding the harmonic droop control to the converter local controller, the voltage harmonic of the PCC is further suppressed. At this time, the voltage quality generated by the microgrid in the standalone mode can be improved.
It is worth mentioning that the strategy of line impedance estimation applied in the thesis is mainly suitable for the following cases: the strong power grids, weak power grids, weak power grids that introduced the nonlinear loads and the case of standalone mode under the introduce of nonlinear loads. However, generally the cases of adding nonlinear loads in weak grids or standalone mode will decrease the estimation accuracy. This thesis applied a robust estimation strategy based on a second order generalized integrator (SOGI) bandpass filter, which extracts the fundamental voltage and current to estimate line impedance, so that the estimation accuracy will not be affeced in some severe load condictions.
關鍵字(中) ★ 三相交流微電網
★ 併網模式
★ 孤島模式
★ 阻抗估算策略
★ 諧波垂降控制
★ 諧波電壓抑制
★ 負虛擬阻抗
關鍵字(英) ★ Three-phase AC Microgrid
★ Grid-Connected Mode
★ Standalone Mode
★ Impedance Estimation Strategy
★ Harmonic Droop Control
★ Voltage Harmonic Mitigation
★ Negative Virtual Impedance
論文目次 摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VII
表目錄 XIV
第一章 緒論 1
1-1 研究背景與動機 1
1-2 文獻回顧 2
1-3 本文貢獻 5
1-4 論文大綱 8
第二章 電網形成反流器基本控制架構 9
2-1 電能轉換器的種類 9
2-2 電能轉換器的基本控制 11
2-2-1 座標軸轉換 11
2-2-2 電流估算策略 13
2-2-3 鎖相迴路 15
2-2-4 垂降控制器 17
2-2-5 雙迴路控制 22
2-3 併網程序 27
第三章 傳統阻抗估算與諧波電壓抑制的控制策略 31
3-1 傳統阻抗估算策略 31
3-1-1 即時小波之估測阻抗方法 31
3-1-2 基於功率變化之估算阻抗方法 32
3-1-3自適應性閾值之估測阻抗方法 33
3-2 傳統諧波電壓電流抑制的控制策略 35
3-2-1 用於選擇性諧波補償的電流控制器 36
3-2-2 用於選擇性諧波電流補償的數位鎖相放大器 39
3-2-3 用於單相系統諧波電壓補償的諧波垂降控制器 41
3-2-4 用於注入三次諧波在脈衝寬度調變之諧波電壓補償控制器 44
3-2-5 用於虛擬諧波阻抗之諧波電壓補償控制器 45
第四章 所提阻抗估算與諧波電壓抑制的策控制略 46
4-1 前言 46
4-2 電網短路比 47
4-3 二階廣義積分正交信號產生器 50
4-4 線路阻抗估算策略 51
4-5 所提負虛擬阻抗介紹 57
4-6 所提三相諧波電壓抑制的控制策略 59
第五章 系統規劃與模擬驗證 67
5-1 模擬軟體與系統架構與流程介紹 67
5-2 併網程序與功能驗證 75
5-3 阻抗估算模擬 77
5-4 諧波電壓抑制模擬 85
5-5 多台轉換器功率分配及諧波電壓抑制模擬 88
第六章 硬體實現與實驗結果 92
6-1 硬體電路與周邊設備 92
6-1-1 數位信號處理器 92
6-1-2 硬體元件介紹 93
6-1-3 主電路介紹 99
6-2 阻抗估算實驗 105
6-3 諧波電壓抑制實驗 113
6-4 多台轉換器功率分配及諧波電壓抑制實驗 116
第七章 結論與未來展望 119
7-1 論文內容總結 119
7-2 未來研究方向 120
參考文獻 121
參考文獻 [1] W. Du et al., "Modeling of Grid-Forming and Grid-Following Inverters for Dynamic Simulation of Large-Scale Distribution Systems," IEEE Transactions on Power Delivery, vol. 36, no. 4, pp. 2035-2045, Aug. 2021
[2] S. Reichert, G. Griepentrog and B. Stickan, "Comparison between grid-feeding and grid-supporting inverters regarding power quality," 2017 IEEE 8th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Florianopolis, Brazil, 2017, pp. 1-4, doi: 10.1109/PEDG.2017.7972536
[3] J. Rocabert, A. Luna, F. Blaabjerg and P. Rodríguez, "Control of Power Converters in AC Microgrids," IEEE Transactions on Power Electronics, vol. 27, no. 11, pp. 4734-4749, Nov. 2012.
[4] Se-Kyo Chung, "A phase tracking system for three phase utility interface inverters," IEEE Transactions on Power Electronics, vol. 15, no. 3, pp. 431-438, May 2000
[5] M. Dai, M. N. Marwali, J. -W. Jung and A. Keyhani, "Power Flow Control of a Single Distributed Generation Unit," IEEE Transactions on Power Electronics, vol. 23, no. 1, pp. 343-352, Jan. 2008.
[6] F. Hans, W. Schumacher and L. Harnefors, "Small-Signal Modeling of Three-Phase Synchronous Reference Frame Phase-Locked Loops," IEEE Transactions on Power Electronics, vol. 33, no. 7, pp. 5556-5560, July 2018.
[7] Y. W. Li and C. -N. Kao, "An Accurate Power Control Strategy for Power-Electronics-Interfaced Distributed Generation Units Operating in a Low-Voltage Multibus Microgrid," IEEE Transactions on Power Electronics, vol. 24, no. 12, pp. 2977-2988, Dec. 2009.
[8] R. Kadri, J. -P. Gaubert and G. Champenois, "An Improved Maximum Power Point Tracking for Photovoltaic Grid-Connected Inverter Based on Voltage-Oriented Control," IEEE Transactions on Industrial Electronics, vol. 58, no. 1, pp. 66-75, Jan. 2011
[9] B. Lang, H. Zhang, L. Sun, B. Wang and X. Zheng, "Design of Three Phase Grid-Connected Inverter Based on Grid-Voltage Oriented Control," 2019 Chinese Control Conference (CCC), Guangzhou, China, 2019, pp. 6525-6530, doi: 10.23919/ChiCC.2019.8865694.
[10] Huang, L.; Wu, C.; Zhou, D.; Blaabjerg, F. Impact of Grid Strength and Impedance Characteristics on the Maximum Power Transfer Capability of Grid-Connected Inverters. Appl. Sci. 2021.
[11] P. Rodríguez, A. Luna, I. Candela, R. Mujal, R. Teodorescu and F. Blaabjerg, "Multiresonant Frequency-Locked Loop for Grid Synchronization of Power Converters Under Distorted Grid Conditions," IEEE Transactions on Industrial Electronics, vol. 58, no. 1, pp. 127-138, Jan. 2011.
[12] H. Xu, X. Zhang, F. Liu, R. Shi, C. Yu and R. Cao, "A Reactive Power Sharing Strategy of VSG Based on Virtual Capacitor Algorithm," IEEE Transactions on Industrial Electronics, vol. 64, no. 9, pp. 7520-7531, Sept. 2017.
[13] Q. -C. Zhong, "Harmonic Droop Controller to Reduce the Voltage Harmonics of Inverters," IEEE Transactions on Industrial Electronics, vol. 60, no. 3, pp. 936-945, March 2013, doi: 10.1109/TIE.2012.2189542.
[14] Q. -C. Zhong, F. Blaabjerg, J. M. Guerrero and T. Hornik, "Reduction of voltage harmonics for parallel-operated inverters," 2011 IEEE Energy Conversion Congress and Exposition, Phoenix, AZ, USA, 2011, pp. 473-478, doi: 10.1109/ECCE.2011.6063807.
[15] Q. -C. Zhong, "Robust Droop Controller for Accurate Proportional Load Sharing Among Inverters Operated in Parallel," IEEE Transactions on Industrial Electronics, vol. 60, no. 4, pp. 1281-1290, April 2013, doi: 10.1109/TIE.2011.2146221.
[16] J. M. Guerrero, J. C. Vasquez, J. Matas, L. G. de Vicuna and M. Castilla, "Hierarchical Control of Droop-Controlled AC and DC Microgrids—A General Approach Toward Standardization," IEEE Transactions on Industrial Electronics, vol. 58, no. 1, pp. 158-172, Jan. 2011.
[17] F. Deng, W. Yao, X. Zhang, Y. Tang and P. Mattavelli, "Review of Impedance-Reshaping-Based Power Sharing Strategies in Islanded AC Microgrids," IEEE Transactions on Smart Grid, vol. 14, no. 3, pp. 1692-1707, May 2023.
[18] Y. Guan, J. M. Guerrero, X. Zhao, J. C. Vasquez and X. Guo, "A New Way of Controlling Parallel-Connected Inverters by Using Synchronous-Reference-Frame Virtual Impedance Loop—Part I: Control Principle," IEEE Transactions on Power Electronics, vol. 31, no. 6, pp. 4576-4593, June 2016.
[19] F. Deng, W. Yao, X. Zhang and P. Mattavelli, "A Decentralized Current Sharing Strategy for Islanded Resistive Microgrids Based on Iterative Virtual Impedance Regulation," IEEE Transactions on Industrial Informatics, vol. 18, no. 6, pp. 3958-3969, June 2022.
[20] F. Deng, Y. Li, X. Li, W. Yao, X. Zhang and P. Mattavelli, "A Decentralized Impedance Reshaping Strategy for Balanced, Unbalanced and Harmonic Power Sharing in Islanded Resistive Microgrids," IEEE Transactions on Sustainable Energy, vol. 13, no. 2, pp. 743-754, April 2022.
[21] A. S. Vijay, N. Parth, S. Doolla and M. C. Chandorkar, "An Adaptive Virtual Impedance Control for Improving Power Sharing Among Inverters in Islanded AC Microgrids," IEEE Transactions on Smart Grid, vol. 12, no. 4, pp. 2991-3003, July 2021.
[22] A. S. Vijay, S. Doolla and M. C. Chandorkar, "Varying Negative Sequence Virtual Impedance Adaptively for Enhanced Unbalanced Power Sharing Among DGs in Islanded AC Microgrids," IEEE Transactions on Energy Conversion, vol. 36, no. 4, pp. 3271-3281, Dec. 2021.
[23] P. Sreekumar and V. Khadkikar, "Direct Control of the Inverter Impedance to Achieve Controllable Harmonic Sharing in the Islanded Microgrid," IEEE Transactions on Industrial Electronics, vol. 64, no. 1, pp. 827-837, Jan. 2017.
[24] A. H. Yazdavar, M. A. Azzouz and E. F. El-Saadany, "A Novel Decentralized Control Scheme for Enhanced Nonlinear Load Sharing and Power Quality in Islanded Microgrids," IEEE Transactions on Smart Grid, vol. 10, no. 1, pp. 29-39, Jan. 2019.
[25] C. Lascu, L. Asiminoaei, I. Boldea and F. Blaabjerg, "High Performance Current Controller for Selective Harmonic Compensation in Active Power Filters," IEEE Transactions on Power Electronics, vol. 22, no. 5, pp. 1826-1835, Sept. 2007, doi: 10.1109/TPEL.2007.904060.
[26] M. N. Ashraf, R. A. Khan and W. Choi, "A Novel Selective Harmonic Compensation Method for Single-Phase Grid-Connected Inverters," IEEE Transactions on Industrial Electronics, vol. 68, no. 6, pp. 4848-4858, June 2021, doi: 10.1109/TIE.2020.2989723.
[27] D. P. Blair and P. H. Sydcnham, “Phase sensitive detection as a means to recover signals buried in noise, J. Phys. E Sci. Instrum., vol. 8, 1975, Art.no. 621.
[28] M. K. Behera and L. C. Saikia, "An Improved Voltage and Frequency Control for Islanded Microgrid Using BPF Based Droop Control and Optimal Third Harmonic Injection PWM Scheme," IEEE Transactions on Industry Applications, vol. 58, no. 2, pp. 2483-2496, March-April 2022, doi: 10.1109/TIA.2021.3135253.
[29] P. Sreekumar and V. Khadkikar, "A New Virtual Harmonic Impedance Scheme for Harmonic Power Sharing in an Islanded Microgrid," IEEE Transactions on Power Delivery, vol. 31, no. 3, pp. 936-945, June 2016, doi: 10.1109/TPWRD.2015.2402434.
[30] L. Lin, H. Ma and Z. Bai, "An Improved Proportional Load-Sharing Strategy for Meshed Parallel Inverters System With Complex Impedances," IEEE Transactions on Power Electronics, vol. 32, no. 9, pp. 7338-7351, Sept. 2017.
[31] B. Adineh, R. Keypour, P. Davari and F. Blaabjerg, "Review of Harmonic Mitigation Methods in Microgrid: From a Hierarchical Control Perspective," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 9, no. 3, pp. 3044-3060, June 2021, doi: 10.1109/JESTPE.2020.3001971.
[32] D. K. Alves, R. L. A. Ribeiro, F. B. Costa and T. O. A. Rocha, "Real-Time Wavelet-Based Grid Impedance Estimation Method," IEEE Transactions on Industrial Electronics, vol. 66, no. 10, pp. 8263-8265, Oct. 2019, doi: 10.1109/TIE.2018.2870407.
[33] N. Mohammed, T. Kerekes and M. Ciobotaru, "An Online Event-Based Grid Impedance Estimation Technique Using Grid-Connected Inverters," IEEE Transactions on Power Electronics, vol. 36, no. 5, pp. 6106-6117, May 2021, doi: 10.1109/TPEL.2020.3029872.
[34] Y. Wang, W. Xu and J. Yong, "An Adaptive Threshold for Robust System Impedance Estimation," IEEE Transactions on Power Systems, vol. 34, no. 5, pp. 3951-3953, Sept. 2019, doi: 10.1109/TPWRS.2019.2924349.
[35] H. Dong, S. Yuan, Z. Han, X. Ding, S. Ma and X. Han, "A Comprehensive Strategy for Power Quality Improvement of Multi-Inverter-Based Microgrid With Mixed Loads," IEEE Access, vol. 6, pp. 30903-30916, 2018, doi: 10.1109/ACCESS.2018.2826923.
[36] P. Sreekumar and V. Khadkikar, "A New Virtual Harmonic Impedance Scheme for Harmonic Power Sharing in an Islanded Microgrid," IEEE Transactions on Power Delivery, vol. 31, no. 3, pp. 936-945, June 2016, doi: 10.1109/TPWRD.2015.2402434.
[37] A. Micallef, M. Apap, C. Spiteri-Staines and J. M. Guerrero, "Mitigation of Harmonics in Grid-Connected and Islanded Microgrids Via Virtual Admittances and Impedances," IEEE Transactions on Smart Grid, vol. 8, no. 2, pp. 651-661, March 2017, doi: 10.1109/TSG.2015.2497409.
[38] J. M. Alcala, M. Castilla, L. G. de Vicuña, J. Miret and J. C. Vasquez, "Virtual Impedance Loop for Droop-Controlled Single-Phase Parallel Inverters Using a Second-Order General-Integrator Scheme," IEEE Transactions on Power Electronics, vol. 25, no. 12, pp. 2993-3002, Dec. 2010, doi: 10.1109/TPEL.2010.2082003.
[39] W. Yao, M. Chen, J. Matas, J. M. Guerrero and Z. -M. Qian, "Design and Analysis of the Droop Control Method for Parallel Inverters Considering the Impact of the Complex Impedance on the Power Sharing," IEEE Transactions on Industrial Electronics, vol. 58, no. 2, pp. 576-588, Feb. 2011, doi: 10.1109/TIE.2010.2046001.
[40] R. Ghanizadeh, M. Ebadian, and G. B. Gharehpetian, “Non-linear load sharing and voltage harmonics compensation in islanded microgrids with converter interfaced units,” Int. Trans. Elect. Energy Syst., vol. 27, no. 1, pp. 1–20, 2017.
[41] S. Y. Mousazadeh Mousavi, A. Jalilian, M. Savaghebi, and J. Guerrero,“Flexible compensation of voltage and current unbalance and harmonics in microgrids,” Energies, vol. 10, no. 10, pp. 1–19, 2017.
[42] Y. Han, P. Shen, X. Zhao and J. M. Guerrero, "Control Strategies for Islanded Microgrid Using Enhanced Hierarchical Control Structure With Multiple Current-Loop Damping Schemes," IEEE Transactions on Smart Grid, vol. 8, no. 3, pp. 1139-1153, May 2017, doi: 10.1109/TSG.2015.2477698.
[43] B. Liu, Z. Liu, J. Liu, R. An, H. Zheng and Y. Shi, "An Adaptive Virtual Impedance Control Scheme Based on Small-AC-Signal Injection for Unbalanced and Harmonic Power Sharing in Islanded Microgrids," IEEE Transactions on Power Electronics, vol. 34, no. 12, pp. 12333-12355, Dec. 2019, doi: 10.1109/TPEL.2019.2905588.
[44] J. He, Y. W. Li, D. Bosnjak and B. Harris, "Investigation and Active Damping of Multiple Resonances in a Parallel-Inverter-Based Microgrid," IEEE Transactions on Power Electronics, vol. 28, no. 1, pp. 234-246, Jan. 2013, doi: 10.1109/TPEL.2012.2195032.
[45] A. Timbus, M. Liserre, R. Teodorescu, P. Rodriguez and F. Blaabjerg, "Evaluation of Current Controllers for Distributed Power Generation Systems," IEEE Transactions on Power Electronics, vol. 24, no. 3, pp. 654-664, March 2009, doi: 10.1109/TPEL.2009.2012527.
[46] A. V. Timbus, M. Ciobotaru, R. Teodorescu and F. Blaabjerg, "Adaptive resonant controller for grid-connected converters in distributed power generation systems," Twenty-First Annual IEEE Applied Power Electronics Conference and Exposition, 2006. APEC ′06., Dallas, TX, USA, 2006, pp. 6 pp.-, doi: 10.1109/APEC.2006.1620754.
[47] T. Hornik and Q. -C. Zhong, "A Current-Control Strategy for Voltage-Source Inverters in Microgrids Based on H∞ and Repetitive Control," IEEE Transactions on Power Electronics, vol. 26, no. 3, pp. 943-952, March 2011, doi: 10.1109/TPEL.2010.2089471.
[48] 周郢。「具柔切三相六開關反流器之併網及新型垂降控制策略」。碩士論文,國立中央大學電機工程學系,2022.
[49] 黃暄盛。「基於虛擬阻抗孤島交流微電網功率分配及其電壓與頻率恢復控制策略之發展」。碩士論文,國立中央大學電機工程學系,2023.
[50] D. Panda, P. Kundu and B. S. Rajpurohit, "Real-Time Voltage Control and Harmonics Elimination of Islanded Microgrid Using Back-to-Back Electric Spring," in IEEE Transactions on Industry Applications, vol. 60, no. 4, pp. 5825-5839, July-Aug. 2024, doi: 10.1109/TIA.2024.3397963.
指導教授 廖益弘(Yi-Hung Liao) 審核日期 2024-8-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明