博碩士論文 111521101 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:98 、訪客IP:18.216.207.209
姓名 李俊緯(Chun-Wei Lee)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 基於韌性指標應用於聚落式微電網最佳化調度策略
(Optimal Dispatching Strategy for Modular Rundling Microgrid Based on System Resilience Index)
相關論文
★ 高效能電子轉向控制器設計★ 微電網能源管理系統優化調度基於螢火蟲移動迴歸策略
★ 以半區間法為基礎之最大功率追蹤技術於能源轉換系統之設計★ 智慧型電力品質事件辨識技術於分散式能源 之監測辨識系統開發
★ 以自適應性線性濾波器與頻率檢測法為基礎之並聯主動式電力濾波器設計★ 以互補式單側多脈波寬度調變之低電流漣波高增益比昇壓轉換器研製
★ 以類神經網路為基礎之時頻域混合交流電弧爐模型於電力品質分析之應用★ 以虛擬同步發電機為基礎之微電網轉換器控制算法設計
★ 以IEEE 1459標準為基礎之選擇性補償策略應用於並聯式主動電力濾波器設計★ 結合雙二階廣義積分法與鎖頻迴路為基礎 之串聯式主動電力濾波器設計
★ 微電網與市電併聯之同步控制器設計★ 以自適應性為基礎之遞迴式最小二乘方法應用於配電型靜態同步補償器設計
★ 磁共振式無線功率傳輸系統之線圈及鐵氧體設計與分析★ 具共振頻率切換之多輸出無線功率傳輸裝置研製
★ 高功率雷射源之切換式電源供應器★ 應用於微電網故障保護之專家系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 隨著電網的快速發展,技術的更迭以及再生能源的推廣,使微電網的概念越來越普及在大眾眼中,為了提升微電網的效益除了不斷增大儲能和發電量,將各個微電網互聯也是解決方法之一,但多微電網的管理會是能不能更好運用的困難點。本文提出模組化聚落式微電網架構,對於多微電網的管理進行責任分屬,在本質不變的情況下讓微電網發揮一加一大於二的功用,在聚落當中由一個微電網做為聚落核心,並控制該聚落中的任一微電網的電力調度策略,以關鍵負載能維持運轉的時數為預留儲能系統電量的依據,聚落核心會依據聚落中的可調度電源調整聚落的拓樸結構,並透過提出的韌性指標以及成本的量化數據供用戶能直觀的看到微電網的運行效益。透過層次分析法計算多目標權重並運用在最佳化演算法混合聚落動態拓樸結構和充放電狀態,使微電網的效能能控制在用戶希望的目標水準,本文利用MATLAB進行模擬,並在中央大學驗證,觀察本文提出以韌性指標為目標的效益,最後對結果做結論並分析未來研究方向。
摘要(英) With the rapid development of the power grid, technological advancements, and the promotion of renewable energy, the concept of microgrids has become increasingly popular among the public. To enhance the efficiency of microgrids, aside from continually increasing storage and generation capacity, interconnecting various microgrids is also one of the solutions. This paper proposes a Modular Rundling Microgrid (MRM) architecture to manage multiple microgrids by distributing responsibilities. This approach allows microgrids to achieve one plus one equal three. In each Rundling, one microgrid acts as the core, controlling power dispatching strategy within the Rundling. The reserve energy capacity of the storage system is based on the hours of operation for critical loads. The Rundling core adjusts the topology of the Rundling based on dispatchable power sources and uses proposed resilience index and cost data to provide users with the microgrid′s operational efficiency. By calculating multi-objective weights through the Analytic Hierarchy Process (AHP) and applying them in an optimization algorithm that mixes Rundling dynamic topology structures and charge/discharge states, the performance of the microgrid can be controlled to meet user-defined target levels. The paper uses MATLAB for simulation, and observes the benefits of the proposed resilience-index-based scheduling. Finally, verify its feasibility in the actual field at Central University and concludes by analyzing the results and discussing future research directions.
關鍵字(中) ★ 聚落式微電網
★ 動態拓樸結構
★ 韌性指標
★ 電力調度策略
關鍵字(英) ★ Rundling Microgrids
★ Dynamic Topology Structures
★ Resilience Index
★ Power Dispatching Strategy
論文目次 論文摘要 I
ABSTRACT II
致謝 III
目錄 IV
圖目錄 VIII
表目錄 XVII
第一章 緒論 1
1-1研究背景與動機 1
1-2 文獻探討 3
1-3 論文大綱 4
第二章 微電網電力調度架構 5
2-1 微電網系統架構 5
2-1-1 併網狀態之微電網系統架構 5
2-1-2 孤島狀態下的微電網系統架構 8
2-1-3 MRM微電網系統架構 9
2-2 電力調度之資料處理架構 13
2-2-1 集中式運算架構 13
2-2-2 分散式運算架構 14
2-2-3 MRM架構之通訊運算架構 15
第三章 MRM架構之能源管理調度策略 17
3-1 微電網運作之成本規劃 17
3-1-1 儲能系統 17
3-1-2 太陽能系統 21
3-1-3 市電成本 22
3-2 韌性指標計算 23
3-2-1 功率型指標 24
3-2-2 能量型指標 26
3-2-3 整合能量型和功率型指標之韌性指標計算 32
3-3 MRM系統最佳化調度 33
3-3-1 最佳化目標函式 35
3-3-2 透過層次分析法設計目標函式 38
3-3-3 混合整數型粒子群最佳化演算法 43
3-4 MRM能源管理系統 52
3-4-1 儲能系統預留能源 53
3-4-2 負載分級策略 57
3-4-3 聚落能量型指標 60
3-4-4 儲能系統輸出上下限 60
3-4-5 電力調度命令控制 61
第四章 聚落式微電網之能源管理調度結果 63
4-1 實驗場域之微電網介紹 63
4-2 模擬情境一:正常運行 69
4-2-1 本文方法預留SAIDI時間 70
4-2-2 本文方法預留三十分鐘 75
4-2-3 成本最佳化預留SAIDI時間 80
4-2-4 成本最佳化預留三十分鐘 84
4-3 模擬情境二:市電切離一小時 89
4-3-1 本文方法預留SAIDI時間 89
4-3-2 成本最佳化預留SAIDI時間 93
4-3-3 成本最佳化預留三十分鐘 99
4-4 模擬情境三:市電切離四小時 105
4-4-1 本文方法預留SAIDI時間 105
4-4-2 成本最佳化預留SAIDI時間 108
4-4-3 成本最佳化預留三十分鐘 112
4-5 場域驗證一:正常運行 117
4-6 場域驗證二:市電切離90分鐘 122
第五章 結論與未來研究方向 127
5-1 結論 127
5-2 未來研究方向 128
參考文獻 130
參考文獻 [1] B. Jiang, H. Gui, L. Yang, Z. Bie, S. Liu and G. Li, “Research on the Developing Mode and its Evaluation Index System for Future Power Systems,” 2019 IEEE 8th International Conference on Advanced Power System Automation and Protection (APAP), Xi′an, China, 2019, pp. 1896-1900, doi: 10.1109/APAP47170.2019.9224757.
[2] Z. Rui, L. Xiaoming, D. Jingyuan, L. KeCheng and L. Anchang, “The Research of Practicality Evaluation Index System of New Energy Combined Power Project,” 2019 IEEE 8th International Conference on Advanced Power System Automation and Protection (APAP),Xi′an,China,2019,pp.1176-1180,doi:10.1109/APAP47170.2019.9224672.
[3] “IEEE Recommended Practice for Monitoring Electric Power Quality,” IEEE Std 1159-2019 (Revision of IEEE Std 1159-2009) , vol.,no.,pp.1-98, 13 Aug. 2019,doi:10.1109/IEEESTD.2019.8796486.
[4] Fook-Luen Heng, Younghun Kim, M. Lavin, A. Goyal and T. Kumar, “The relationship between intrinsic reliability of utility distribution network design to SAIDI: A statistical quantification,” 2016 IEEE Power and Energy Society General Meeting (PESGM), Boston, MA, 2016, pp. 1-5, doi: 10.1109/PESGM.2016.7741346.
[5] “IEEE Guide for Using IEEE Std 1547 for Interconnection of Energy Storage Distributed Energy Resources with Electric Power Systems,” IEEE Std 1547.9-2022 , vol., no., pp.1-87, 5 Aug. 2022, doi: 10.1109/IEEESTD.2022.9849493.
[6] Jiang, Y., Wan, C., Chen, C., Shahidehpour, M., & Song, Y. (2019). “A hybrid stochastic-interval operation strategy for multi-energy microgrids,” IEEE Transactions on Smart Grid, 11(1), 440-456.
[7] P. Li, D. Xu, Z. Zhou, W. -J. Lee and B. Zhao, “Stochastic Optimal Operation of Microgrid Based on Chaotic Binary Particle Swarm Optimization,” IEEE Transactions on Smart Grid, vol. 7, no. 1, pp. 66-73, Jan. 2016, doi: 10.1109/TSG.2015.2431072.
[8] H. Li, C. Zang, P. Zeng, H. Yu and Z. Li, “A genetic algorithm-based hybrid optimization approach for microgrid energy management,” 2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), Shenyang, China, 2015, pp. 1474-1478, doi: 10.1109/CYBER.2015.7288162.
[9] Wang, W., Wang, D., Jia, H., Chen, Z., Guo, B., Zhou, H., & Fan, M.. “Review of steady-state analysis of typical regional integrated energy system under the background of energy internet,” Proceedings of the CSEE, (2016) 36(12), 3292-3305.
[10] Chen, H., Gao, L., Zhang, Y., & Zhao, C..” Optimal scheduling strategy of a regional integrated energy system considering renewable energy uncertainty and heat network transmission characteristics.” Energy Reports, (2022) 8, 7691-7703.
[11] Zhao,J.,Wang,W.,Guo,C.,& Feng, H. “Multi-energy Microgrid Group Planning Hierarchical Collaborative Optimization Configuration,” 2022 International Conference on Power Energy Systems and Applications (ICoPESA), (2022, February). (pp. 455-462). IEEE.
[12] Zhang, Y., Xiao, J., Yang, J., Xu, B., Li, R., Li, Y., & Wang, J.. “Multi-time Scale Dispatch of Distribution Network and Multi-microgrid with Renewable Energy Access,” In 2021 IEEE 4th International Conference on Big Data and Artificial Intelligence (BDAI), (2021, July) (pp. 154-159). IEEE.
[13] Pérez-Flores, A. C., Antonio, J. D. M., Olivares-Peregrino, V. H., Jiménez-Grajales, H. R., Claudio-Sanchez, A., & Ramírez, G. V. G.. “Microgrid energy management with asynchronous decentralized particle swarm optimization,” IEEE Access, (2021) 9, 69588-69600.
[14] Fan, L., Luo, S., Shao, L., Shao, N., Sun, Z., & Xu, C.. “Coordinated Optimal Operation for Building Microgrid Considering Hybrid Storage and Demand Response,” In 2021 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia), (2021, July) (pp. 1080-1085). IEEE.
[15] Zhang, L., Yu, Y., Li, B., Qian, X., Zhang, S., Wang, X., ... & Chen, M.. “Improved cycle aging cost model for battery energy storage systems considering more accurate battery life degradation,” IEEE Access, (2021)10, 297-307.
[16] Liu, Z., Yi, Y., Yang, J., Tang, W., Zhang, Y., Xie, X., & Ji, T.. “Optimal planning and operation of dispatchable active power resources for islanded multi‐microgrids under decentralised collaborative dispatch framework,” IET Generation, Transmission & Distribution, (2020)14(3), 408-422.
[17] 台灣電力股份有限公司,發電資訊再生能源發展概況,中華民國113年。取自https://www.taipower.com.tw/tc/page.aspx?mid=204&c
id=154&cchk=0a47a6ed-e663-447b-8c27-092472d6dc73
[18] Yan, Q., & Tu, X.. “Home Smart Energy Management System for Optimized Electricity Cost Reduction Using Photovoltaic-Powered EV Charging Station,” In 2022 7th Asia Conference on Power and Electrical Engineering (ACPEE) , (2022, April) (pp. 116-121). IEEE.
[19] Pilot, N., Bedilion, R., Fregosi, D., Hackett, S., Bolen, M., & Stekli, J.. “Techno-economic Analysis of Novel PV Plant Designs for Extreme Cost Reductions,” In 2021 IEEE 48th Photovoltaic Specialists Conference (PVSC) , (2021, June) (pp. 1258-1265). IEEE.
[20] 台灣電力股份有限公司,網路櫃檯,時間電價試算評估,中華民國113年。取自https://service.taipower.com.tw/taipowerdsm/resid
ential-and-commercial
[21] 台灣電力股份有限公司,近十年每戶停電時間,中華民國113年https://www.taipower.com.tw/tc/page.aspx?mid=201
[22] 台灣電力股份有限公司,住宅用戶每月平均用電度數及電費與去年同期比較結果,中華民國113年。取自https://www.taipower.com.tw/tc/page.aspx?mid=213&cid=350&cchk=442d7a5d-36f1-4036-89da-a40d392985c4
[23] D. A. Istiqomah and V. A. Windarni, “Comparative Analysis of the Implementation of the AHP and AHP-PROMETHEE for the Selection of Training Participants,” 2019 4th International Conference on Information Technology, Information Systems and Electrical Engineering (ICITISEE), Yogyakarta, Indonesia, 2019, pp. 67-72, doi: 10.1109/ICITISEE48480.2019.9003980.
[24] C. Zhuo, D. Zhaobin, Z. Haoqin and W. Kai, “An Evaluation Method of Reactive Power and Voltage Control Ability for Multiple Distributed Generators in an Islanded Micro-grid,” 2018 International Conference on Power System Technology (POWERCON),Guangzhou,China,2018,pp.1819-1825,doi:10.1109/POWERCON.2018.8601944.
[25] Saaty, Thomas L.. “Relative Measurement and Its Generalization in Decision Making. Why Pairwise Comparisons are Central in Mathematics for the Measurement of Intangible Factors. The Analytic Hierarchy/Network Process..” RACSAM 102.2 (2008): 251-318. <http://eudml.org/doc/42060>.
[26] 全國法規資料庫,各類場所消防安全設備設置標準,中華民國113年。取自https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=D0
120029
[27] 朱國豪,基於微電網韌性之互聯多微電網分散式能源管理最佳化調度策略,國立中央大學電機工程學系碩士論文,中華民國 112年 6月。
指導教授 陳正一(Cheng-I Chen) 審核日期 2024-8-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明