博碩士論文 110521005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:33 、訪客IP:3.15.211.143
姓名 何芝儀(Chih-I Ho)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 基於手腕光體積描記訊號於脈波傳導速率和個人化血壓之估測
(Estimation of Pulse Wave Velocity and Personalized Blood Pressure based on Wrist Photoplethysmography)
相關論文
★ 具輸出級誤差消除機制之三位階三角積分D類放大器設計★ 應用於無線感測網路之多模式低複雜度收發機設計
★ 用於數位D類放大器的高效能三角積分調變器設計★ 交換電容式三角積分D類放大器電路設計
★ 適用於平行處理及排程技術的無衝突定址法演算法之快速傅立葉轉換處理器設計★ 適用於IEEE 802.11n之4×4多輸入多輸出偵測器設計
★ 應用於無線通訊系統之同質性可組態記憶體式快速傅立葉處理器★ 3GPP LTE正交分頻多工存取下行傳輸之接收端細胞搜尋與同步的設計與實現
★ 應用於3GPP-LTE下行多天線接收系統高速行駛下之通道追蹤與等化★ 適用於正交分頻多工系統多輸入多輸出訊號偵測之高吞吐量QR分解設計
★ 應用於室內極高速傳輸無線傳輸系統之 設計與評估★ 適用於3GPP LTE-A之渦輪解碼器硬體設計與實作
★ 下世代數位家庭之千兆級無線通訊系統★ 協作式通訊於超寬頻通訊系統之設計
★ 適用於3GPP-LTE系統高行車速率基頻接收機之設計★ 多使用者多輸入輸出前編碼演算法及關鍵組件設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-7-31以後開放)
摘要(中) 根據世界衛生組織統計,心血管疾病為全球一大主要死因,其急性症狀發作如心肌梗塞和腦中風都是危及生命的緊急情況,因此平時的日常照護和預防相當重要,盡早就醫能夠減少死亡率以及病發後遺症的嚴重程度。血壓與脈波傳導速率皆為心血管疾病的重要指標,脈波傳導速率需要於醫院使用儀器進行測量,而血壓的量測通常使用脈壓式血壓計,除了較為不適,也無法長時間監測,不利於睡眠時期血壓的監控。本論文利用穿戴式裝置收集生理訊號,分別以手腕的光體積描記訊號和心電訊號來估測脈波傳導速率,以及只用手腕的光體積描記訊號來估測血壓。對訊號會先進行前處理,去除市電60Hz的干擾及基線飄移,並對訊號做預篩選以濾除品質不良的波形,接著進到特徵提取與加權式波形拆解得到所需的特徵,而訊號品質檢測會去除不良波形所提取的特徵。在資料處理程序,取得每一特徵序列的中位數,並移除數值上的離群值以確保特徵具有代表性。將資料分為訓練資料集、驗證資料集與測試資料集,而為了資料區間的平衡,另外對訓練資料集進行複製。脈波傳導速率的估測以使用隨機森林的分類器搭配極限梯度提升回歸器來進行分層回歸模型的結果為最佳,男性平均的均方根誤差為145.0 cm/s,女性平均的均方根誤差為141.4 cm/s。而血壓的估測為校正式之個人化模型,以不拘束受試者的活動下能提供日夜間包含睡眠時期的血壓,使用模型無關之元學習演算法中的少樣本學習概念,僅需要少量的校正數據就能使模型快速收斂,提升了使用者的便利性。在使用5筆校正資料下,平均15人的收縮壓之平均誤差與標準差為0.06 ± 6.90 mmHg,均方根誤差為6.76 mmHg,舒張壓之平均誤差與標準差為0.01 ± 6.54 mmHg,均方根誤差為6.82 mmHg。而夜間血壓下降之平均絕對誤差為4.80 mmHg。而減少到使用3筆校正資料,收縮壓之平均誤差與標準差為-0.62 ± 7.62 mmHg,均方根誤差為7.57 mmHg,舒張壓之平均誤差與標準差為-0.32 ± 6.96 mmHg,均方根誤差為7.00 mmHg。而夜間血壓下降之平均絕對誤差為5.77 mmHg。
摘要(英) According to statistics from the World Health Organization, cardiovascular diseases are a major cause of death globally. Acute symptoms such as myocardial infarction and stroke are life-threatening emergencies, making daily care and prevention crucial. Early medical intervention can reduce mortality rates and the severity of post-incident complications. Both blood pressure (BP) and pulse wave velocity (PWV) are important indicators of cardiovascular disease. PWV measurements require hospital equipment, while BP is typically measured using a sphygmomanometer, which is uncomfortable and unsuitable for long-term monitoring, particularly during sleep. This study uses a wearable device to collect physiological signals. PWV is estimated using photoplethysmography (PPG) and electrocardiogram (ECG) signals from the wrist, and BP is estimated using only PPG signals. At signal preprocessing stage, 60Hz power line interference and baseline wandering are removed, and poor-quality waveforms are filtered out through pre-screening. Feature extraction and weighted waveform decomposition are then performed to obtain the features. Features extracted from poor-quality waveforms can be dispelled according to signal quality index. In the data processing step, the median of each feature sequence is obtained, and outliers are removed to ensure representativeness. The data is divided into training, validation, and test datasets. To balance the data range, the training dataset is additionally duplicated. The best result for PWV estimation uses a hierarchical regression model combining a random forest classifier and an extreme gradient boosting (XGBoost) regressor. The average root mean square error (RMSE) for males is 145.0 cm/s and 141.4 cm/s for females. Additionally, a calibrated personalized model provides daytime and nighttime BP estimates, including sleep period, in daily life. Using a model-agnostic meta-learning (MAML) algorithm, the concept of few-shot learning allows the model to converge quickly with only a small amount of calibration data, enhancing user convenience. With 5 calibration data, the mean error and standard deviation for SBP across 15 individuals are 0.06 ± 6.90 mmHg, with an RMSE of 6.76 mmHg. For DBP, the mean error and standard deviation are 0.01 ± 6.54 mmHg, with an RMSE of 6.82 mmHg. The mean absolute error for nighttime SBP dip is 4.80 mmHg. When reduced to 3 calibration data, the mean error and standard deviation for SBP are -0.62 ± 7.62 mmHg, with an RMSE of 7.57 mmHg. For DBP, the mean error and standard deviation are -0.32 ± 6.96 mmHg, with an RMSE of 7.00 mmHg. The mean absolute error for nighttime SBP dip is 5.77 mmHg.
關鍵字(中) ★ 血壓估測
★ 脈波傳導速率估測
★ 光體積描記訊號
★ 心電訊號
★ 模型無關之元學習
關鍵字(英) ★ Blood pressure estimation
★ Pulse wave velocity estimation
★ Photoplethysmography
★ Electrocardiogram
★ Model-agnostic meta-learning
論文目次 摘要 i
目錄 iii
表目錄 vii
圖目錄 ix
第一章 緒論 1
1.1 研究動機 1
1.2 研究方法 1
1.3 論文組織 2
第二章 生理訊號 3
2.1 脈波傳導速率(Pulse Wave Velocity, PWV) 3
2.2 收縮壓與舒張壓(Systolic and Diastolic Blood Pressure) 4
2.3 心電訊號(Electrocardiogram, ECG) 5
2.4 光體積描記訊號(Photoplethysmography, PPG) 6
2.5 三軸加速度計訊號(Triaxial Accelerometer Signal) 7
第三章 訊號處理 8
3.1 流程圖 8
3.2 靜態訊號前處理 10
3.3 二十四小時訊號前處理 11
3.3.1 選擇範圍(Select Range) 11
3.3.2 偵測脈壓帶充氣(Detect Cuff Inflation) 12
3.3.3 確認脈壓帶充氣時間(Check Cuff Inflation Time) 13
3.3.4 計算活動指數(Activity Index, AI) 15
3.3.5 計算活動發生率(Activity Occurrence, AO)和活動計數(Activity Count, AC) 18
3.3.6 預處理及升取樣(Preprocessing and Up-sampling) 20
3.4 預篩選(Pre-screening, PreSQI) 22
3.4.1 飽和訊號檢測(Saturated Signal Detection) 22
3.4.2 異常幅距檢測(Abnormal Range Detection) 23
3.5 特徵提取(Feature Extraction) 24
3.5.1 光體積描記訊號特徵擷取 24
3.5.2 心電訊號特徵擷取 25
3.6 訊號品質檢測(Signal Quality Index, SQI) 26
3.7 加權式波形拆解(Weighted Pulse Decomposition) 28
3.7.1 波形拆解 28
3.7.2 波形拆解品質檢測(Weighted Pulse Decomposition SQI) 29
第四章 脈波傳導速率估測及結果 31
4.1 資料處理 31
4.1.1 資料與特徵可靠度檢查(Data and Feature Reliability Check) 32
4.1.2 特徵擴充(Feature Combination) 33
4.1.3 取中位數(Median Selection) 35
4.1.4 資料集切割(Dataset Segmentation) 35
4.2 演算法 37
4.2.1 多元線性迴歸(Multivariate Regression) 37
4.2.2 極限梯度提升(eXtreme Gradient Boosting, XGBoost) 38
4.2.3 隨機森林(Random Forest) 39
4.3 全域迴歸模型 40
4.3.1 多元線性迴歸(Multivariate Regression) 40
4.3.2 極限梯度提升(eXtreme Gradient Boosting, XGBoost) 45
4.4 分層迴歸模型(Hierarchical Regression Model) 48
4.4.1 全域分類(Global Classification) 49
4.4.2 區域迴歸(Local Regression) 50
4.5 結果比較 66
4.6 總結 69
第五章 個人化模型血壓估測及結果 70
5.1 資料處理 70
5.1.1 K值與多尺度熵(K Value and Multiscale Entropy) 71
5.1.2 PPG波形提取(PPG Waveform Extraction) 72
5.1.3 資料與特徵可靠度檢查(Data and Feature Reliability Check) 72
5.1.4 特徵擴充與取中位數(Feature Combination and Median Selection) 73
5.2 演算法 75
5.2.1 少樣本學習(Few-shot Learning)及元學習(Meta Learning)[18] 75
5.2.2 無關模型之元學習演算法(Model-Agnostic Meta-Learning) 77
5.3 資料集分割與約束 79
5.3.1 訓練任務 79
5.3.2 測試任務 81
5.4 個人化模型之估測結果 84
5.4.1 模型架構與基於MAML產生之初始權重 84
5.4.2 自適化學習率方法(Adaptive Learning Rate Method) 86
5.4.3 校正資料五筆之估測結果 91
5.4.4 校正資料四筆之估測結果 94
5.4.5 校正資料三筆之估測結果 97
5.4.6 單輸出架構之舒張壓估測 101
5.5 結果比較 107
5.6 總結 110
第六章 結論與未來展望 111
參考資料 112
參考文獻 [1] J. Cho, H. J. Baek, “A Comparative Study of Brachial–Ankle Pulse Wave Velocity and Heart–Finger Pulse Wave Velocity in Korean Adults,” Sensors, vol. 7, no. 20, 7 Apr 2020.
[2] K. Song, K. -y. Chung and J. -H. Chang, “Cuffless Deep Learning-Based Blood Pressure Estimation for Smart Wristwatches,” in IEEE Transactions on Instrumentation and Measurement, vol. 69, no. 7, pp. 4292-4302, July 2020, doi: 10.1109/TIM.2019.2947103.
[3] https://www.capitalheart.sg/what-does-an-abnormal-ecg-mean/
[4] Pribadi, Eka Fitrah & Pandey, Rajeev Kumar & Chao, Paul. (2020). Optimizing a novel PPG sensor patch via optical simulations towards accurate heart rates. Microsystem Technologies. 26. 10.1007/s00542-020-04895-6.
[5] https://www.philips.com.au/healthcare/product/HCNOCTN446/actiwatch-spectrum-pro-get-the-actiwatch-advantage
[6] 楊家毓, “基於手腕光體積描記訊號於通用化及個人化血壓估測模型之應用, ” 碩士論文, 國立中央大學電機工程學系, 2023
[7] 李御銓, “基於階層迴歸方法運用光體積描記訊號與心電圖估測血壓與脈波傳導速度, ” 碩士論文, 國立中央大學電機工程學系, 2022
[8] 郭嘉威, “基於手指光電容積描記法與心電訊號之血壓估測, ” 碩士論文, 國立中央大學電機工程學系, 2021
[9] Tsai, P.-Y. et al, “Coherence between decomposed components of wrist and finger PPG signals by imputing missing features and resolving ambiguous features,” Sensors 21, 4315, 2021.
[10] Ricardo Couceiro and Rui Pedro Paiva at al., “Assessment of cardiovascular function from multi-Gaussian fitting of a finger photoplethysmogram,” Physiological Measurement, vol. 36, no. 9, pp. 1801, 2015.
[11] 黃秋樺, “基於光電容積描記法之手腕脈波傳導速度估測, ” 碩士論文, 國立中央大學電機工程學系, 2020
[12] Dae-Geun Jang et al., “A knowledge-based approach to arterial stiffness estimation using the digital volume pulse,” IEEE Transactions on Biomedical Circuits and Systems, vol. 6, no. 4, pp. 366-374, 2012.
[13] D.-G. Jang, S.-H. Park and M. Hahn, “Enhancing the pulse contour analysis-based arterial stiffness estimation using a novel photoplethysmographic parameter,” IEEE Journal of Biomedical and Health Informatics, vol. 19, no. 1, pp. 256-262, 2015.
[14] Shin, H., “XGBoost regression of the most significant photoplethysmogram features for assessing vascular aging,” IEEE Journal of Biomedical and Health Informatics, 2022.
[15] W. Jin, P. Chowienczyk, and J. Alastruey, “Estimating pulse wave velocity from the radial pressure wave using machine learning algorithms,” PLoS ONE, vol. 16, no. 6, Jun. 2021.
[16] Hellqvist H, Karlsson M, Hoffman J, Kahan T and Spaak J, “Estimation of aortic stiffness by finger photoplethysmography using enhanced pulse wave analysis and machine learning,” Front. Cardiovasc. Med, 2024, doi: 10.3389/fcvm.2024.1350726.
[17] Costa M, Goldberger AL, Peng CK, “Multiscale entropy analysis of biological signals,” Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Feb;71(2 Pt 1):021906. doi: 10.1103/PhysRevE.71.021906. Epub 2005 Feb 18. PMID: 15783351.
[18] Hung-yi Lee, Shang-Wen Li, and Thang Vu. 2022. Meta Learning for Natural Language Processing: A Survey. In Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 666–684, Seattle, United States. Association for Computational Linguistics.
[19] Finn, Chelsea and Abbeel, Pieter and Levine, Sergey, “Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks”, arXiv, 2017, doi: 0.48550/ARXIV.1703.03400
[20] Kim, B.S., Kim, J.H., Kim, W. et al. Clinical and life style factors related to the nighttime blood pressure, nighttime dipping and their phenotypes in Korean hypertensive patients. Clin Hypertens 29, 21 (2023).
[21] Hermida, Ramón C et al. “Decreasing sleep-time blood pressure determined by ambulatory monitoring reduces cardiovascular risk.” Journal of the American College of Cardiology vol. 58,11 (2011): 1165-73. doi:10.1016/j.jacc.2011.04.043
[22] Radha M, de Groot K, Rajani N, Wong CCP, Kobold N, Vos V, Fonseca P, Mastellos N, Wark PA, Velthoven N, Haakma R, Aarts RM. Estimating blood pressure trends and the nocturnal dip from photoplethysmography. Physiol Meas. 2019 Feb 26;40(2):025006. doi: 10.1088/1361-6579/ab030e. PMID: 30699397.
[23] B. Boehmke and B. Greenwell, Hands-on machine learning with R. Chapman and Hall/CRC, 2019.
[24] Y. -L. Zheng, B. P. Yan, Y. -T. Zhang and C. C. Y. Poon, "An Armband Wearable Device for Overnight and Cuff-Less Blood Pressure Measurement," in IEEE Transactions on Biomedical Engineering, vol. 61, no. 7, pp. 2179-2186, July 2014, doi: 10.1109/TBME.2014.2318779.
指導教授 蔡佩芸(Pei-Yun Tsai) 審核日期 2024-8-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明