以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:47 、訪客IP:3.137.199.145
姓名 曾顗澄(Yi-Cheng Tseng) 查詢紙本館藏 畢業系所 電機工程學系 論文名稱 P-型氮化鎵閘極連接至源極之加強型氮化鎵 電晶體開發
(E-mode AlGaN/GaN HEMTs with p-type GaN gate connected to source)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] 至系統瀏覽論文 ( 永不開放) 摘要(中) 本論文為研究蕭特基p型氮化鎵閘極浮接問題,當功率元件操作在關閉狀態時,汲極端承受高偏壓,而p-GaN處於浮接狀態,會使CGD電容耦和效應在p-GaN層產生負電荷,導致元件操作時的臨界電壓(VTH)不穩定。為改善此問題,將p-GaN層連接到源極,以提供釋放電荷的路徑。本次設計了兩種元件,分別為具p-GaN閘極延伸至源極之AlGaN/GaN HEMT (AlGaN/GaN HEMT with p-GaN extended to source)和具連接到源極p-GaN電阻之AlGaN/GaN HEMT (AlGaN/GaN HEMT with a p-GaN resistor connected to source)。並通過Silvaco TCAD元件模擬、電性測量分析,並與傳統p型氮化鎵閘極結構之元件特性比較。
新設計的AlGaN/GaN HEMT with p-GaN extended to source,相較於傳統p-GaN gate HEMT,利用閘極至源極端之間p-GaN層的額外存在來提高元件的VTH元件臨界電壓由1.05 V增加到2.05 V,增加了95%。並且從第三象限I-V特性量測觀察到有較低的反向導通電壓。變溫I-V量測也顯示臨界電壓較為穩定。透過Silvaco TCAD模擬元件在高電壓下的電場分佈,閘極邊緣靠近源極端的電場峰值有所下降,並隨著p-GaN佔整體主動區比例越高,崩潰電壓從1078 V增加到1678 V,提升了55.6%。但隨著p-GaN佔整體主動區比例增加,會有最大電流(IDmax)降低和RON增加的缺點。
為了克服AlGaN/GaN HEMT with p-GaN extended to source的缺點,新設計了AlGaN/GaN HEMT with a p-GaN resistor connected to source,此設計不但避免了p-GaN不是浮接,減少了電容耦合電荷累積效應,同時保留了AlGaN/GaN HEMT with p-GaN extended to source的優點,並改善了缺點,汲極最大電流與導通電阻都與傳統p-GaN gate HEMT相當。而兩種新型元件都展現出較大的閘極崩潰電壓,顯示其有更大的閘極電壓輸入範圍,元件在10年壽命的評估下閘極能夠操作到5.1 V與 5.2 V,相比傳統p-GaN閘極結構(4.6 V)也有所提升。摘要(英) This paper presents two new structures to resolve the issue of p-type GaN floating in Schottky p-GaN gate AlGaN/GaN HEMTs. When the device operates in the off-state, the drain terminal endures high bias, and the p-GaN layer is in a floating state. This causes the CGD capacitance coupling effect to generate negative charges in the p-GaN layer, leading to instability in the threshold voltage (VTH) during device operation. To solve this problem, the p-GaN layer is connected to the source terminal to provide a path for charge release. Two types of devices were designed: AlGaN/GaN HEMT with p-GaN extended to the source and AlGaN/GaN HEMT with a p-GaN resistor connected to the source. These devices were analyzed using Silvaco TCAD device simulation and electrical measurement analysis, and their characteristics were compared with those of traditional p-type GaN gate structures.
The newly designed AlGaN/GaN HEMT with p-GaN extended to the source, compared to the conventional p-GaN gate HEMT, utilizes the additional p-GaN layer between the gate and source to increase the device′s VTH. The threshold voltage was increased from 1.05 V to 2.05 V, a 95% improvement. Additionally, lower reverse conduction voltage was observed from the third quadrant I-V characteristic measurements. Temperature-dependent I-V measurements also showed more stable threshold voltage. Through Silvaco TCAD simulations of the device under high voltage, the peak electric field at the gate edge near the source was found to decrease as the p-GaN area ratio increased. The blocking voltage increased from 1078 V to 1678 V, a 55.6% improvement. However, as the p-GaN area ratio increased, the maximum drain current (IDmax) decreased, and the on-resistance (RON) increased.
A new design of AlGaN/GaN HEMT with p-GaN extended to the source has been developed to overcome the shortcomings of the AlGaN/GaN HEMT with a p-GaN resistor connected to the source. This design avoids having the p-GaN floating and reduces the capacitive coupling effect. It retains the advantages of the AlGaN/GaN HEMT with p-GaN extended to the source while improving its shortcomings. The maximum drain current and on-resistance are comparable to traditional p-GaN gate HEMTs. Dynamic measurements also show lower on-resistance. Both new types of devices exhibit higher gate breakdown voltage, indicating a larger gate voltage input range. Under a 10-year lifespan evaluation, the gate can operate at 5.1 V and 5.2 V, an improvement over the traditional p-GaN gate structure.關鍵字(中) ★ 氮化鎵
★ p型氮化鎵閘極氮化鋁鎵 /氮化鎵高電子遷移率電晶體
★ 蕭特基二極體
★ 反向傳導關鍵字(英) ★ GaN
★ p-GaN gate AlGaN/GaN HEMT
★ SBD
★ Reverse Conduction論文目次 中文摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 XII
第一章 緒論 1
1.1 前言 1
1.2 Ⅲ-Ⅴ族半導體氮化鎵特性 3
1.3 實現增強型氮化鎵元件及Schottky p-GaN閘極浮接問題以及相應的改善辦法文獻回顧 5
1.4 研究動機與目的 12
1.5 論文架構 13
第二章 氮化鎵電晶體之磊晶結構及AlGaN/GaN HEMT with p-GaN extended to source元件佈局、模擬、製作與分析 14
2.1 AlGaN/GaN於矽基板之磊晶結構與特性 14
2.2 具p-GaN閘極延伸至源極之AlGaN/GaN HEMT之佈局與製程流程 23
2.2.1元件佈局 23
2.2.2 元件之製程流程 25
2.3 具p-GaN閘極延伸至源極之AlGaN/GaN HEMT元件模擬 29
2.4 具p-GaN閘極延伸至源極之AlGaN/GaN HEMT元件直流量測與分析 33
2.4.1 元件第三象限I-V特性分析 38
2.4.2 元件於閘極零伏與浮接之電性量測 44
2.4.3 元件崩潰電壓特性分析 46
2.5結論 48
第三章 具連接到源極 p-GaN 電阻之AlGaN/GaN HEMT佈局、製作與電性分析 50
3.1 具連接到源極p-GaN電阻之AlGaN/GaN HEMT之佈局 50
3.1.1 元件佈局 50
3.1.2 p型氮化鎵閘極電阻(RG)長度設計介紹 52
3.1.3 具連接到源極p-GaN電阻之AlGaN/GaN HEMT之製程流程 55
3.2 具連接到源極p-GaN電阻之AlGaN/GaN HEMT模擬 58
3.3 具連接到源極p-GaN電阻之AlGaN/GaN HEMT量測與分析 61
3.3.1元件直流量測特性 61
3.3.2元件於閘極零伏與浮接之電性量測 68
3.3.3 動態特性分析 70
3.4 閘極長時間I-V量測 73
3.4.1韋伯分布分析(Weibull distribution) 75
3.4.2元件十年壽命預估 76
3.5元件崩潰電壓特性 77
3.6 結論 78
第四章 結論 79
參考文獻 80
附錄 I 詳細製程流程 82
附錄 Ⅱ 詳細製程流程 84參考文獻 [1] S. J. Pearton, J. Yang, P. H. Cary, F. Ren, J. Kim, M. J. Tadjer, and M. A. Mastro, "A review of Ga2O3 materials, processing, and devices", Appl. Phys. Rev., vol. 5, no. 1, Jan. 2018.
[2] M. Buffolo et al., "Review and Outlook on GaN and SiC Power Devices: Industrial State-of-the-Art, Applications, and Perspectives,"IEEE Transactions on Electron Devices, vol. 71, no. 3, pp. 1344-1355, March 2024
[3] X.Liu, D. Ji, and Y. Lu,“Scattering induced by Al segregation in AlGaN/GaN heterostructures” Applied Physics Letters, vol. 107, no. 7, Aug. 2015.
[4] R. Brown, "A novel AlGaN/GaN based enhancement-mode high electron mobility transistor with sub-critical barrier thickness", Phd thesis, University of Glasgow, Jul. 2015.
[5] D. Balaz, "Current Collapse and Device Degradation in AlGaN/GaN Heterostructure Field Effect Transistors", Phd thesis, University of Glasgow, 2010.
[6] J. Wei, R. Xie, H. Xu, H. Wang, G. Tang, J. He, Y. Wang, M. Zhang, M. Hua, K. J. Chen, K. Zhong,"Charge Storage Mechanism of Drain Induced Dynamic Threshold Voltage Shift in p-GaN Gate HEMTs," IEEE Electron Device Letters, vol. 40, no. 4, pp. 526-529, April 2019
[7] Y. Xin, W. Chen, R. Sun, Y. Shi, C. Liu, Y. Xia, F. Wang, X. Xu, Q. Shi, Y. Wang, X. Deng, Q. Zhou, Z. Li, B. Zhang,"Electrostatic Discharge (ESD) Behavior of p-GaN HEMTs,"2020 32nd International Symposium on Power Semiconductor Devices and ICs (ISPSD), Vienna, Austria, 2020
[8] 秦鎮緯, "增強型氮化鎵電晶體之閘極可靠度分析與閘極浮接電性探討," 國立中央大學電機工程學系碩士論文, 2021.
[9] A. N. Tallarico, S. Stoffels, P. Magnone, N. Posthuma, E. Sangiorgi, S. Decoutere, and C. Fiegna, “Investigation of the p-GaN Gate Breakdown in Forward-Biased GaN-Based Power HEMTs,”IEEE Electron Device Lett., vol. 38, no. 1, pp.99-102, Jan. 2017.
[10] H. Xu, J. Wei, R. Xie, Z. Zheng and K. J. Chen, "A SPICE-Compatible Equivalent-Circuit Model of Schottky Type p-GaN Gate Power HEMTs with Dynamic Threshold Voltage," 2020 32nd International Symposium on Power Semiconductor Devices and ICs (ISPSD), Vienna, Austria, 2020.
[11] J. Chen, Li Zhang, M. Hua, C. Wang, L. Liu, L. Li, J. Wei,"Decoupling of Forward and Reverse Turn-on Threshold Voltages in Schottky-Type p-GaN Gate HEMTs,"IEEE Electron Device Letters, vol. 42, no. 7, pp. 986-989, July 2021
[12] I. Hwang, J. Oh, H. Soon Choi, J. Kim, H. Choi, J. Kim, S. Chong, J. Shin, U. Chung"Source-Connected p-GaN Gate HEMTs for Increased Threshold Voltage,"IEEE Electron Device Letters, vol. 34, no. 5, pp. 605-607, May 2013.
[13] R. Reiner, P. Waltereit, B. Weiss, M. Wespel, R. Quay, M. Schlechtweg, M. Mikulla and, O. Ambacher, “Integrated Reverse-Diodes for GaN-HEMT Structures,” 27th IEEE International Symposium on Power Semiconductor Devices and ICs, pp. 45–48, May 2015.
[14] L. Zhang, J. Wei, Z. Zheng, W. Song, H. Xu, J. Cheng " p-GaN Gate Power Transistor With Distributed Built-in Schottky Barrier Diode for Low-loss Reverse Conduction,"IEEE Electron Device Letters, vol. 41, no. 3, pp. 341-344, March 2020.指導教授 辛裕明 審核日期 2024-8-22 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare