以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:47 、訪客IP:18.116.60.24
姓名 Krishna Sai Sriramadasu(Krishna Sai Sriramadasu) 查詢紙本館藏 畢業系所 電機工程學系 論文名稱 氮化鋁鎵 /氮化鎵高電子遷移率電晶體的 p-GaN閘極工程設計和實現
(Gate Engineering in E-Mode p-GaN Gate AlGaN/GaN HEMTs)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] 至系統瀏覽論文 ( 永不開放) 摘要(中) 氮化鎵 (GaN) 基高電子遷移率電晶體 (HEMT) 的開發徹底改變了電力電子領域,與傳統矽基元件相比,在效率、開關速度和熱性能方面具有顯著優勢。這博士論文對先進 GaN HEMT 結構進行了全面研究,特別關注增強常關(E 模式)元件的性能,這對於功率開關應用至關重要。
在這項工作中,我們研究了幾種新穎的元件架構和製造技術,旨在克服與 GaN HEMT 相關的固有p-GaN閘極挑戰。以下研究概述了本研究的主要貢獻:
具有薄 AlGaN 障礙層 HEMT 的擴展 p-GaN 閘極:本研究研究了具有擴展 p-GaN 的常斷 p-GaN/AlGaN/GaN HEMT。 p-GaN 擴展區域下方的 AlGaN 障礙層中的最佳化凹陷深度提供了改進的元件特性。模擬研究了AlGaN障礙層凹陷深度和p-GaN延伸區的延伸長度對閥值電壓(VTH)、最大漏極電流(ID,MAX)和崩潰電壓(BV)的影響。與沒有p-GaN 擴展的元件相比,所提出的具有1 μm p-GaN 擴展和AlGaN 障礙層中2 nm 凹槽深度的電晶體在VTH 和ID,MAX 方面有所改進,而不會降低崩潰電壓。
常關 p-GaN 閘極 AlGaN/GaN HEMT,具有新的蕭特基第二柵極。本研究提出了一種常斷雙閘極 AlGaN/GaN HEMT。第二閘極位於p-GaN閘極和汲極之間並連接到源極。 p-GaN 旁的第二個閘極下方的 AlGaN 層的最佳化厚度和長度顯著影響 ID,MAX和關閉擊穿條件。由於在第二閘極和汲極之間建立了反向電流的續流路徑,以防止元件負偏壓時出現過大的壓降和導通損耗,因此反向導通特性也得到改善。與傳統的HEMT相比,所提出的方法顯示了一種可行的方法來實現具有優異正向和反向傳導性能的常斷GaN基HEMT。
具有 p-GaN 延伸閘極的 AlGaN/GaN HEMT,可改善電流分散和擊穿特性:本研究介紹了一種獨特的 p 型 GaN 閘極 AlGaN/GaN HEMT 配置。在這個設計中,p-GaN 區域向具有原始柵電極的汲極延伸。這項創新顯著增強了 HEMT 的性能,與傳統 p-GaN 閘極 HEMT 相比,崩潰電壓 (BV) 提高了 45.2%,VTH 提高了 17%。延伸閘極設計重新分佈電場,充當場板以提高崩潰電壓。此外,所提出的元件透過在不增加 RON 的情況下減少 17.4% 的飽和電流,可能提供改進的短路能力。
p-GaN AlGaN/GaN HEMT 磊晶層中的障礙層肖特基二極體:這項工作研究了將AlGaN/GaN 肖特基二極體與p- 並聯放置而創建的障礙層肖特基(偽JBS)二極體。這種偽JBS二極體利用二維電子氣來增加工作電流,從而降低RON。所製造的陽極至陰極長度(LAC) 為10 μm 的偽JBS 二極體顯示出1.05 V 的開啟電壓、2.53 mΩ-cm2 的最小
7
比RON (RON,MIN) 和1112 V 的崩潰電壓,從而產生了優異的性能。這項研究為肖特基障礙層二極體提供了一種有前景的替代品,無需額外的 p-GaN 層設計。
結合MIS 和p-GaN 閘極結構的新閘極設計,可實現常關和高導通電流操作:本研究提出了一種新的閘極架構,整合了p-GaN 閘極和金屬-絕緣體-半導體(MIS) 結構,可實現常關和高導通操作。 Silvaco TCAD 模擬軟體用於評估所提議設計的性能。對元件的傳輸、輸出和崩潰特性進行了全面分析,並與傳統的 p-GaN 閘極 AlGaN/GaN HEMT 進行了比較。研究結果表明,將 MIS 與 p-GaN 閘極結合可以增加通態電流密度並降低 RON。所提出的 HEMT 表現出優越的屬性,與傳統的 p-GaN 閘極 HEMT 相比,漏極電流增加了 80%,但仍與 VTH 和 BV 相似。因此,與傳統的 p-GaN 閘極 HEMT 相比,所提出的 HEMT 表現出更高的電流密度並增強了對通道的閘極控制,而無需修改 VTH.
在整個論文中,我們結合了實驗技術、先進的製造流程和全面的模擬來驗證所提出的新設計。對 VTH 穩定性、RON、電流崩潰和 BV 等關鍵性能指標進行系統分析和最佳化。這項研究的結果有助於推動基於 GaN 的功率元件的進步,為元件設計和製造提供新的見解。所提出的結構展示了增強 GaN HEMT 性能和可靠性的巨大潛力,為其在高功率和高頻應用中的提供可能性方案。本文最後討論了未來的工作,並強調了進一步改進和探索的潛在領域。其中包括先進材料的整合、元件尺寸的縮放以及開發新的表面製程技術,以充分利用 GaN HEMT 在下一代電力電子元件中的功能。摘要(英) The development of Gallium Nitride (GaN)-based High Electron Mobility Transistors (HEMTs) has revolutionized the field of power electronics, offering significant advantages in terms of efficiency, switching speed, and thermal performance over traditional silicon-based devices. This Ph.D. thesis presents a comprehensive study of advanced GaN HEMT structures, with a particular focus on enhancing the performance of normally-off (E-mode) devices, which are crucial for power switching applications.
In this work, we investigate several novel device architectures and fabrication techniques aimed at overcoming the inherent challenges associated with GaN HEMTs. The primary contributions of this research are outlined in the following studies:
Extended p-GaN gate with thin AlGaN barrier HEMTs: This study investigated a normally-off p-GaN/AlGaN/GaN HEMT with the extended p-GaN. The optimized recess depth in the AlGaN barrier under the extended region of p-GaN provides improved device characteristics. The influences of recess depth in the AlGaN barrier and the extended length of the p-GaN extension on the threshold voltage (VTH), the maximum drain current (ID,MAX), and breakdown voltage (BV) were simulated and studied. The proposed transistor with a 1-μm p-GaN extension and 2-nm recess depth in AlGaN barrier shows improvement on VTH and ID,MAX without degrading the breakdown voltage compared with the device without p-GaN extension.
Normally
O ff p GaN g ate AlGaN/GaN HEMT with a n ew s chottky s econd g ate This study presents a normally-off dual-gate AlGaN/GaN HEMT. The second gate is located between the p-GaN gate and the drain and is connected to the source. The optimized thickness and length of the AlGaN layer under the second gate next to the p-GaN significantly impact the I D,MAX and the off-state breakdown conditions. The reverse conduction characteristic is also improved because the freewheeling path of the reverse current is established between the second gate and the drain to prevent excessive voltage drop and conduction losses when the device is negatively biased. Compared with conventional HEMT, the proposed method shows a promising way to achieve normally-off GaN-based HEMTs with excellent forward and reverse conduction performance.
An AlGaN/GaN HEMT with p
GaN e xtended g ate for i mprovements on c urrent d ispersion and
b reakdown c haracteristics: This study introduces an unique p-type GaN gate AlGaN/GaN
9
HEMT configuration. In this design, the p-GaN region extends toward the drain with an original gate electrode. This innovation significantly enhances the HEMT’s performance, with a 45.2% increase in breakdown voltage (BV) and a 17% higher VTH compared to conventional p-GaN gate HEMTs. The extended gate design redistributes the electric field, acting as a field plate to elevate the breakdown voltage. Furthermore, the proposed device, by reducing 17.4% of the saturation current without increasing the RRONON, possibly offers improved short-circuit capability.
A
A ppseudoseudo--jjunction unction bbarrier Schottky arrier Schottky ddiode in piode in p--GaN AlGaN/GaN GaN AlGaN/GaN HEMT eHEMT epitaxial pitaxial llayers:ayers: This work investigates a pseudo-junction barrier Schottky (pseudo-JBS) diode that is created by placing an AlGaN/GaN Schottky diode in parallel with a p-GaN junction on the same epitaxial p-GaN gate AlGaN/GaN HEMT wafer. This pseudo-JBS diode employs the two-dimensional electron gas to increase the operation current, thus reducing the RRONON with high blocking voltage. The fabricated pseudo-JBS diode with anode-to cathode lengths (LAC) of 10μm shows a turn-on voltage of 1.05 V, a minimum specific RRONON (RON,MIN) of 2.53mΩ cm2, and blocking voltage of 1112 V yielding an excellent Baliga’s figure of merit of 488.7MWcm-2 on the same epitaxial p-GaN/AlGaN/GaN HEMT wafer. This study provides a promising substitute for Schottky barrier diodes without requiring extra p-GaN layer design.
A
A nnew ew ggate ate ddesign esign ccombining MIS and pombining MIS and p--GaN GaN ggate ate sstructures for tructures for nnormallyormally--ooff and ff and hhigh igh oonn--ccurrent urrent ooperation: peration: This study proposes a new gate architecture that integrates both a p-GaN gate and a metal–insulator–semiconductor (MIS) structure for a normally-off AlGaN/GaN HEMT. Silvaco TCAD simulation software is used to assess the performance of the proposed design. A comprehensive analysis of the device’s transfer, output, and breakdown characteristics is carried out and compared with the conventional p-GaN gate AlGaN/GaN HEMT. The findings indicate that incorporating MIS in conjunction with the p-GaN gate leads to an augmentation in the on-state current density and a reduction in RRONON. The proposed HEMT exhibits superior attributes, with an 80% increase in drain current compared to the conventional p-GaN gate HEMT, but remains similar to VTH and BV. Consequently, the proposed HEMT demonstrates elevated current density and enhances gate control over the channel without modifying the VTH compared to the conventional p-GaN gate HEMT
Throughout this thesis, we employ a combination of experimental techniques, advanced fabrication processes, and comprehensive simulations to validate the proposed designs. Key performance metrics such as VTH stability, RON, current collapse, and BV are systematically analyzed and optimized. The findings of this research contribute to the advancement of GaN-based power devices, providing new insights into device design and fabrication. The proposed
10
structures demonstrate significant potential for enhancing the performance and reliability of GaN HEMTs, paving the way for their broader adoption in high-power and high-frequency applications. This thesis concludes with a discussion of future work, highlighting potential areas for further improvement and exploration. These include the integration of advanced materials, scaling of device dimensions, and the development of new characterization techniques to fully exploit the capabilities of GaN HEMTs in next-generation power electronics.關鍵字(中) ★ E-Mode GaN HEMT
★ Threshold Voltage
★ On-Resistance
★ Breakdown Voltage
★ Novel Structure Design
★ Short Circuit關鍵字(英) ★ E-Mode GaN HEMT
★ Threshold Voltage
★ On-Resistance
★ Breakdown Voltage
★ Novel Structure Design
★ Short Circuit論文目次 List of figures .................................. 17
Introduction ..................................... 27
1.1 Preface ............................................................................................................................ 27
1.2 General background ....................................................................................................... 27
1.3 GaN journey begins ........................................................................................................ 28
1.4. Gallium-Nitride ............................................................................................................. 31
1.4.1. Band diagrams and charge density in AlGaN/GaN heterostructures ......................... 33
1.4.2. AlGaN/GaN HEMT ................................................................................................... 34
1.4.3. Growth techniques for binary and ternary compounds .............................................. 37
1.4.4. Substrate choice for AlGaN/GaN HEMTs ................................................................. 39
1.5. MIS-HEMTs .................................................................................................................. 41
1.6. Normally-off HEMT ..................................................................................................... 42
1.7 Overview of the development of E-Mode p-GaN gate HEMTs .................................... 46
1.8. Overview of the short-circuit capability of GaN HEMTs ............................................. 60
1.9. Overview of the GaN schottky barrier diode ................................................................ 72
1.10. Research motivation and purpose ............................................................................... 77
1.11. Thesis outline .............................................................................................................. 81
Chapter-2: An AlGaN-GaN HEMT with p-GaN Extended Gate for Improvements on Current Dispersion and .......................................................................................................................... 83
Breakdown Characteristics ....................................................................................................... 83
2.1. Introduction ................................................................................................................... 83
14
2.2. Literature review on developments on E-Mode AlGaN/GaN HEMT .......................... 83
2.3 Proposed device concept ................................................................................................ 89
2.3.1. Motivation for proposed design: ............................................................................ 89
2.4 Device structure information and cross section diagram ............................................... 90
2.4.1. Simulated results and discussion ............................................................................ 93
2.5 Device epitaxial, fabrication process flow and component layout information ............. 97
2.6. Material analysis of HEMT structural epitaxial layer on silicon substrate ................. 100
2.6.1 Transmission line model ....................................................................................... 100
2.6.2. Hall measurement analysis : ................................................................................. 102
2.6.3 Epitaxial vertical collapse voltage measurement .................................................. 104
2.7. Layout and process flow of p-GaN extended gate AlGaN/GaN HEMT ..................... 105
2.7.1 Process flow of p-GaN gate HEMT and p-GaN extended gate ................................ 108
2.8 Electrical characteristics analysis of p-GaN extended gate HEMT ............................. 111
2.8.1 DC characteristics analysis .................................................................................... 111
2.8.2 Dynamic characteristics analysis .......................................................................... 120
2.9. Summary ..................................................................................................................... 126
Chapter-3: Extend p-GaN gate with thin AlGaN barrier layer p-GaN/AlGaN/GaN HEMT . 129
3.1. Introduction ................................................................................................................. 129
3.2. Simulation methodology ............................................................................................. 129
3.2.1. Simulation framework overview .............................................................................. 130
3.3 Proposed device concept .............................................................................................. 131
3.3.1. Motivation for proposed design: .............................................................................. 132
15
3.4 Device structure information and cross section diagram ............................................. 133
3.5 Device fabrication process flow information ............................................................... 137
3.6. Results and discussion ................................................................................................. 139
3.7 Summary ...................................................................................................................... 146
Chapter-4: Normally-Off p-GaN Gate AlGaN/GaN Transistor with a New Schottky Second Gate ........................................................................................................................................ 148
4.1. Introduction ................................................................................................................. 148
4.2. Literature review of dual gate E-Mode AlGaN/GaN HEMT ...................................... 148
4.3. Proposed device concept ............................................................................................. 151
4.3.1. Motivation for proposed design: ...................................................................... 152
4.4. Device structure information and cross section diagram ............................................ 154
4.5 Device fabrication process flow information ............................................................... 157
4.6. Results and discussion ................................................................................................. 160
4.7 Summary ...................................................................................................................... 171
Chapter-5: A Normally-Off HEMT with a new gate design combined MIS and p-GaN gate structures ................................................................................................................................ 173
5.1. Introduction ................................................................................................................. 173
5.2 Proposed pseudo-JBS diode device concept ................................................................ 175
5.3. Layout of pseudo JBS diode........................................................................................ 176
5.4. Results analysis of pseudo JBS diode ......................................................................... 177
5.4.3. Summary .............................................................................................................. 182
5.5. Proposed device concept ............................................................................................. 182
16
5.6. Device structure information and cross section diagram ............................................ 183
5.7. Device fabrication process flow information .............................................................. 186
5.8. Results and discussion ................................................................................................. 188
5.9. Summary ..................................................................................................................... 193
Chapter-6: Conclusion and Future works............................................................................... 196
6.1. Conclusions ................................................................................................................. 196
6.2. Future work ................................................................................................................. 198
References .......................................................................................................................... 200參考文獻 1.) E. Mitani, H. Haematsu, S. Yokogawa, J. Nikaido, and Y. Tateno, "Mass-Production of High-Voltage GaAs and GaN Devices," in CS MANTECH Conference, Vancouver, Canada, pp. 183-186, Apr. 2006.
2.) T. Mimura, N. Yokoyama, H. Kusakawa, K. Suyama, and M. Fukuta, "MP-A4 GaAs MOSFET for low-power high-speed logic applications," IEEE Trans. Electron Devices, vol. 26, no. 11, pp. 1828, Nov. 1979.
3.) M. A. Khan, A. Bhattarai, J. N. Kuznia, and D. T. Olson, "High electron mobility transistor based on a GaN-AlxGa1−xN heterojunction," Appl. Phys. Lett., vol. 63, no. 9, pp. 1214-1215, Aug. 1993.
4.) Yole Développement, "Wide Band Gap Power Electronics: A Path toward CO2 Emission Decrease," Technical Report, Yole Développement, Villeurbanne, 2014.
5.) M. Sumiya and S. Fuke, "Review of polarity determination and control of GaN," MRS Internet J. Nitride Semicond. Res., vol. 9, pp. 1-13, 2004.
6.) C. Wood and D. Jena, Polarization Effects in Semiconductors: From Ab Initio Theory to Device Applications, 1st ed., Springer, New York, NY, 2008.
7.) O. Ambacher et al., "Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures," J. Phys.: Condens. Matter, vol. 14, pp. 3399-3434, 2002.
8.) Y. Uemoto et al., "A Normally-off AlGaN/GaN Transistor with RonA=2.6mΩcm² and BVds=640V Using Conductivity Modulation," in Proceedings of the International Symposium on Power Semiconductor Devices & ICs (ISPSD), pp. 803-806, 2004.
9.) Y. Ohmaki, M. Tanimoto, S. Akamatsu, and T. Mukai, "Enhancement-Mode AlGaN/AlN/GaN High Electron Mobility Transistor with Low On-State Resistance and High Breakdown Voltage," Jpn. J. Appl. Phys., vol. 45, no. 44, pp. L1168-L1170, Nov. 2006.
10.) K. J. Chen and C. Zhou, "Enhancement-mode AlGaN/GaN HEMT and MIS-HEMT technology," Phys. Status Solidi A, vol. 208, no. 2, pp. 434-438, Feb. 2011.
11.) L. D. Nguyen, L. E. Larson, and U. K. Mishra, "Ultra-high-speed modulation-doped field-effect transistors: A tutorial review," Proc. IEEE, vol. 80, no. 4, pp. 494-518, Apr. 1992.
12.) S. Taking, "AlN/GaN MOS-HEMTs Technology," PhD Thesis, University of Glasgow, 2012.
13.) J. P. Ibbetson, P. T. Fini, K. D. Ness, S. P. DenBaars, J. S. Speck, and U. K. Mishra, "Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors," Appl. Phys. Lett., vol. 77, no. 2, pp. 250-252, July 2000.
14.) Y. Ohno and M. Kuzuhara, "Application of GaN-Based Heterojunction FETs for Advanced Wireless Communication," IEEE Trans. Electron Devices, vol. 48, no. 3, pp. 517-523, Mar. 2001.
15.) U. K. Mishra, P. Parikh, and Y.-F. Wu, "AlGaN/GaN HEMTs—An Overview of Device Operation and Applications," Proc. IEEE, vol. 90, no. 6, pp. 1022-1031, June 2002.
16.) H. M. Manasevit, "The Use of Metalorganics in the Preparation of Semiconductor Materials: Growth on Insulating Substrates," J. Electrochem. Soc., vol. 116, no. 12, pp. 1725-1730, Dec. 1969.
17.) A. Rinta-Möykky, P. Laukkanen, S. Lehkonen, S. Laaksonen, J. Dekker, A. Tukiainen, P. Uusimaa, and M. Pessa, "Plasma-Assisted MBE Growth of GaN on HVPE-GaN Substrates," Phys. Status Solidi A, vol. 176, no. 2, pp. 465-468, 1999.
18.) C. R. Abernathy, J. D. MacKenzie, and S. M. Donovan, "Growth of Group III Nitrides by Metalorganic Molecular Beam Epitaxy," J. Cryst. Growth, vol. 178, pp. 74-86, 1997.
19.) E. C. H. Kyle, S. W. Kaun, P. G. Burke, F. Wu, Y.-R. Wu, and J. S. Speck, "High-electron-mobility GaN grown on free-standing GaN templates by ammonia-based molecular beam epitaxy," J. Appl. Phys., vol. 115, no. 19, pp. 193702, May 2014.
20.) I. C. Kizilyalli, A. P. Edwards, O. Aktas, T. Prunty, and D. Bour, "Vertical Power p-n Diodes Based on Bulk GaN," IEEE Trans. Electron Devices, vol. 62, no. 2, pp. 414-422, Feb. 2015.
21.) Z. Chen, Y. Pei, S. Newman, R. Chu, D. Brown, R. Chung, S. Keller, S. P. Denbaars, S. Nakamura, and U. K. Mishra, "Growth of AlGaN/GaN heterojunction field effect transistors on semi-insulating GaN using an AlGaN interlayer," Appl. Phys. Lett., vol. 94, no. 11, pp. 112108, Mar. 2009.
22.) L. Liu and J. H. Edgar, "Substrates for Gallium Nitride Epitaxy," Mater. Sci. Eng. R, vol. 37, no. 2, pp. 61-127, 2002.
23.) N.Q. Zhang, B. Moran, S. P. DenBaars, U. K. Mishra, X. W. Wang, and T. P. Ma, "Effects of surface traps on breakdown voltage and switching speed of GaN power switching HEMTs," IEDM Tech. Dig., pp. 589-592, 2001.
24.) A. Krost and A. Dadgar, "GaN-based optoelectronics on silicon substrates," Mater. Sci. Eng. B, vol. 93, pp. 77-84, 2002.
25.) S. Choi, E. Heller, D. Dorsey, R. Vetury, and S. Graham, "Analysis of the residual stress distribution in AlGaN/GaN high electron mobility transistors," J. Appl. Phys., vol. 113, no. 9, 093510, Mar. 2013.
26.) J. J. Xu, Y.-F. Wu, S. Keller, G. Parish, S. Heikman, B. J. Thibeault, U. K. Mishra, and R. A. York, "1-8 GHz GaN-based power amplifier using flip-chip bonding," IEEE Microwave Guided Wave Lett., vol. 9, no. 7, pp. 277-279, July 1999.
27.) A. Dadgar, C. Hums, A. Diez, F. Schulze, J. Bläsing, and A. Krost, "Epitaxy of GaN LEDs on large substrates: Si or sapphire," in Proc. SPIE - Advanced LEDs for Solid State Lighting, vol. 6355, 63550R, Jan. 2006.
28.) S. D. Burnham, K. Boutros, P. Hashimoto, C. Butler, D. W. S. Wong, M. Hu, and M. Micovic, "Gate-recessed normally-off GaN-on-Si HEMT using a new O2-BCl3 digital etching technique," Phys. Status Solidi C, vol. 7, no. 7–8, pp. 2010-2012, 2010.
29.) W. Saito, Y. Takada, M. Kuraguchi, K. Tsuda, and I. Omura, "Recessed-gate structure approach toward normally off high-voltage AlGaN/GaN HEMT for power electronics applications," IEEE Trans. Electron Devices, vol. 53, no. 2, pp. 356-362, Feb. 2006.
30.) W. B. Lanford, T. Tanaka, Y. Otoki, and I. Adesida, "Recessed-gate enhancement-mode GaN HEMT with high threshold voltage," Electron. Lett., vol. 41, no. 7, pp. 449-451, Mar. 2005.
31.) C. Y. Chang, S. J. Pearton, C. F. Lo, F. Ren, I. I. Kravchenko, A. M. Dabiran, A. M. Wowchak, B. Cui, and P. P. Chow, "Development of enhancement mode AlN/GaN high electron mobility transistors," Appl. Phys. Lett., vol. 94, 263505, June 2009.
32.) Y. Uemoto, M. Hikita, H. Ueno, H. Matsuo, H. Ishida, M. Yanagihara, T. Ueda, T. Tanaka, and D. Ueda, "Gate injection transistor (GIT)—A normally-off AlGaN/GaN power transistor using conductivity modulation," IEEE Trans. Electron Devices, vol. 54, no. 12, pp. 3393-3399, Dec. 2007.
33.) Y. Cai, Y. Zhou, K. M. Lau, and K. J. Chen, "Control of threshold voltage of AlGaN/GaN HEMTs by fluoride-based plasma treatment: From depletion mode to enhancement mode," IEEE Trans. Electron Devices, vol. 53, no. 9, pp. 2207-2215, Sept. 2006.
34.) T. Palacios, C.S. Suh, A. Chakraborty, S. Keller, S. P. DenBaars, and U. K. Mishra, "High-performance E-mode AlGaN/GaN HEMTs," IEEE Electron Device Lett., vol. 27, no. 6, pp. 428-430, June 2006.
35.) Y. Cai, Y. Zhou, K. J. Chen, and K. M. Lau, "High-performance enhancement-mode AlGaN/GaN HEMTs using fluoride-based plasma treatment," IEEE Electron Device Lett., vol. 26, no. 7, pp. 435-437, July 2005.
36.) L.Y. Su, F. Lee, and J. J. Huang, "Enhancement-mode GaN-based high-electron mobility transistors on the Si substrate with a p-type GaN cap layer," IEEE Trans. Electron Devices, vol. 61, no. 2, pp. 460-465, Feb. 2014.
37.) J. Kim et al., "High threshold voltage p-GaN gate power devices on 200 mm Si," in Proc. ISPSD, pp. 315-318, Kanazawa, Japan, May 2013.
38.) S. Krishna Sai and Y.-M. Hsin, "High voltage normally-off extend p-GaN gate with thin AlGaN barrier layer and AlGaN buffer transistor," MRS Commun., vol. 11, no. 4, pp. 517-522, 2021.
39.) H.C. Chiu, C.H. Liu, Y.S. Chang, H.L. Kao, R. Xuan, C.W. Hu, and F.T. Chien, "Dynamic behavior improvement of normally-off p-GaN high-electron-mobility transistor through a low-temperature microwave annealing process," IEEE J. Electron Devices Soc., vol. 7, pp. 984-989, Sept. 2019.
40.) S. Ishiwaki, T. Iwaki, Y. Sugihara, and K. Nanamori, "Analysis of false turn-on phenomenon of GaN HEMT with parasitic inductances for propose novel design method focusing on peak gate voltage," in Proc. IEEE Energy Conversion Congress and Exposition (ECCE), pp. 1395-1401, Oct. 2017.
41.) T. Sugiyama, D. Iida, M. Iwaya, S. Kamiyama, H. Amano, and I. Akasaki, "Threshold voltage control using SiNx in normally off AlGaN/GaN HFET with p-GaN gate," Phys. Status Solidi C, vol. 7, no. 7-8, pp. 1980-1982, 2010.
42.) I. Hwang, J. Kim, H. S. Choi, H. Choi, J. Lee, K. Y. Kim, J. B. Park, J. C. Lee, J. Ha, J. Oh, J. Shin, and U.-I. Chung, "p-GaN gate HEMTs with tungsten gate metal for high threshold voltage and low gate current," IEEE Electron Device Lett., vol. 34, no. 2, pp. 202-204, Feb. 2013.
43.) T. Ueda, Y. Uemoto, H. Ishida, H. Matsuo, M. Yanagihara, T. Tanaka, M. Ueno, and D. Ueda, "Current-collapse-free operations up to 850 V by GaN-GIT utilizing hole injection from drain," in Proc. ISPSD, pp. 41-44, Hong Kong, May 2015.
44.) F. Lee, L.Y. Su, C.H. Wang, Y.R. Wu, and J. Huang, "Impact of gate metal on the performance of p-GaN/AlGaN/GaN high electron mobility transistors," IEEE Electron Device Lett., vol. 36, no. 3, pp. 232-234, Mar. 2015.
45.) Y.M. Hsin, Y.N. Zhong, Y.C. Lai, and K.H. Tsai, "Performance of an E-mode AlGaN/GaN high-electron-mobility transistor integrated with a current limiting diode," ECS J. Solid State Sci. Technol., vol. 12, no. 8, 085003, 2023.
46.) C. Wang, M. Hua, J. Chen, S. Yang, Z. Zheng, J. Wei, L. Zhang, and K. J. Chen, "E-mode p-n junction/AlGaN/GaN (PNJ) HEMTs," IEEE Electron Device Lett., vol. 41, no. 4, pp. 545-548, Apr. 2020.
47.) C.J. Yu, C.W. Hsu, M.C. Wu, W.C. Hsu, C.Y. Chuang, and J.Z. Liu, "Improved DC and RF performance of novel MIS p-GaN-gated HEMTs by gate-all-around structure," IEEE Electron Device Lett., vol. 41, no. 5, pp. 673-676, May 2020.
48.) D. Niu, Q. Wang, W. Li, C. Chen, J. Xu, L. Jiang, C. Feng, H. Xiao, Q. Wang, X. Xu, and X. Wang, "Hybrid-gate structure designed for high-performance normally-off p-GaN high-electron-mobility transistor," Jpn. J. Appl. Phys., vol. 59, 111001, 2020.
49.) T. Morita, S. Ujita, H. Umeda, Y. Kinoshita, S. Tamura, Y. Anda, T. Ueda, and T. Tanaka, "GaN Gate Injection Transistor with integrated Si Schottky barrier diode for highly efficient DC-DC converters," in IEDM Tech. Dig., pp. 151-154, Dec. 2012.
50.) R. Reiner, P. Waltereit, B. Weiss, M. Wespel, R. Quay, M. Schlechtweg, M. Mikulla, and O. Ambacher, "Integrated reverse-diodes for GaN-HEMT structures," in Proc. ISPSD, pp. 45-48, Hong Kong, May 2015.
51.) Y. Kum, E. Oyama, N. Otake, and, S. Hoshi, "Highly reliable GaN MOS-HFET with high short-circuit capability," in Proc. ISPSD, pp. 51-54, Sapporo, Japan, May 2017.
52.) T. Wang, J. Ma, and E. Matioli, "1100 V AlGaN/GaN MOSHEMTs with integrated tri-anode freewheeling diodes," IEEE Electron Device Lett., vol. 39, no. 7, pp. 1038-1041, July 2018.
53.) Y. Wu, J. Wei, M. Wang, M. Nuo, J. Yang, W. Lin, Z. Zheng, L. Zhang, M. Hua, X. Yang, Y. Hao, K. J. Chen, and B. Shen, "An actively-passivated p-GaN gate HEMT with screening effect against surface traps," IEEE Electron Device Lett., vol. 44, no. 1, pp. 25-28, Jan. 2023.
54.) W. Li, K. Nomoto, M. Pilla, M. Pan, X. Gao, D. Jena, and H. G. Xing, "Design and realization of GaN trench junction-barrier-Schottky-diodes," IEEE Trans. Electron Devices, vol. 64, no. 4, pp. 1635-1641, Apr. 2017.
55.) Y. Zhang, Z. Liu, M. J. Tadjer, M. Sun, D. Piedra, C. Hatem, T. J. Anderson, L. E. Luna, A. Nath, A. D. Koehler, H. Okumura, J. Hu, X. Zhang, X. Gao, B. N. Feigelson, K. D. Hobart, and T. Palacios, "Vertical GaN junction barrier Schottky rectifiers by selective ion implantation," IEEE Electron Device Lett., vol. 38, no. 8, pp. 1097-1100, Aug. 2017.
56.) K.P. Hsueh, Y.S. Chang, B.H. Li, H.C. Wang, H.C. Chiu, C.W. Hu, and R. Xuan, "Effect of the AlGaN/GaN Schottky barrier diodes combined with a dual anode metal and a p-GaN layer on reverse breakdown and turn-on voltage," Mater. Sci. Semicond. Process., vol. 90, pp. 107-111, 2019.
57.) H. Jiang, R. Zhu, Q. Lyu, C. W. Tang, and K. M. Lau, "Thin-barrier heterostructures enabled normally-off GaN high electron mobility transistors," Semicond. Sci. Technol., vol. 36, 034001, 2021.
58.) W. Jiang, H. Tang, and J. A. Bardwell, "Normally-off AlGaN/GaN high electron mobility transistors on Si substrate with selective barrier regrowth in ohmic regions," Semicond. Sci. Technol., vol. 36, 05LT01, 2021.
59.) Y. Huang, J. Li, W. Chen, J. Wang, J. Xue, Q. Cai, D. Chen, and R. Zhang, "High-performance normally off p-GaN gate high-electron-mobility transistor with In0.17Al0.83N barrier layer design," Opt. Quantum Electron., vol. 53, 139, 2021.
60.) I. Silvaco, ATLAS User′s Manual Device Simulation Software, Silvaco Inc., Santa Clara, CA, 2010.
61.) O. Hilt, A. Knauer, F. Brunner, E. Bahat-Treidel, and J. Würfl, "Normally-off AlGaN/GaN HFET with p-type GaN gate and AlGaN buffer," in Proc. ISPSD, pp. 346-351, Hiroshima, Japan, 2010.
62.) B.R. Park, J.G. Lee, and H.Y. Cha, "Normally-off AlGaN/GaN-on-Si power switching device with embedded Schottky barrier diode," Appl. Phys. Express, vol. 6, 031001, 2013.
63.) J. Lei, J. Wei, G. Tang, Q. Qian, M. Hua, Z. Zhang, Z. Zheng, and K.J Chen, "An interdigitated GaN MIS-HEMT/SBD normally-off power switching device with low ON-resistance and low reverse conduction loss," in IEDM Tech. Dig., pp. 609-612, 2017.
64.) S. Hamady, "New concepts for normally-off power gallium nitride (GaN) high electron mobility transistor (HEMT)," PhD diss., Université Toulouse III Paul Sabatier, 2014.
65.) W.S. Tsai, Z.W. Qin, and Y.M. Hsin, "Design of hybrid Schottky-ohmic gate in normally-off p-GaN gate AlGaN/GaN HEMTs," ECS J. Solid State Sci. Technol., vol. 10, 125003, 2021.
66.) Z.W. Qin, W.C. Chen, H.H. Lo, and Y.M. Hsin, "Gate breakdown analysis of Schottky p-GaN gate HEMTs under high positive gate bias," ECS J. Solid State Sci. Technol., vol. 11, 085004, 2022.
67.) Z.W. Qin, W.H. Tsai, W.C. Chen, H.H. Lo, and Y.M. Hsin, "I–V characteristics of E-mode GaN-based transistors under gate floating," Semicond. Sci. Technol., vol. 37, 045002, 2022.
68.) C.W. Chen, W.C. Ho, Y.M. Hsin, J. Tzou, W.-H. Huang, C.H. Shen, J.M. Shieh, W.K. Yeh, W.T. Hsu, and S.C. Liu, "Device characteristics of E-mode GaN HEMTs with a second gate connected to the source," J. Electron. Mater., vol. 49, no. 12, pp. 7071-7079, 2020.指導教授 辛裕明(Yue-Ming Hsin) 審核日期 2024-9-25 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare