博碩士論文 110353025 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:38 、訪客IP:18.118.154.250
姓名 劉庭銘(Ting-Ming Liu)  查詢紙本館藏   畢業系所 機械工程學系在職專班
論文名稱 超音波振動輔助啄鑽式二氧化鋯陶瓷微孔加工之研究
(A Study on Ultrasonic Vibration Assisted Micro-hole Pecking Drilling of ZrO2)
相關論文
★ 電泳沉積輔助拋光於SUJ2軸承鋼加工特性之研究★ 碳化矽電泳拋光矽晶圓表面粗糙度之研究
★ 超音波輔助添加導電粉末於放電加工鐵基金屬玻璃之研究★ 超音波輔助液中磨削鐵基金屬玻璃之研究
★ 脈衝複合偏壓電化學放電加工石英晶圓之研究★ 超音波振動輔助電化學放電加工石英晶圓陣列微孔之研究
★ 超音波輔助電化學留心加工矩槽圓柱構造之研究★ 超音波輔助連續流式線電化學放電加工及電泳拋光石英晶圓之研究
★ 電化學放電複合超音波振動輔助電泳沉積加工石英晶圓微形方孔之研究★ 電極公轉繞圓電化學放電切割加工石英晶圓之研究
★ 快速塑性成型(QPF)製程的精準度探討★ 利用灰色關聯分析法探究線切割放電於SKD61加工之最佳化參數
★ 超音波輔助微電化學鑽孔鎳基合金加工研究★ 超音波輔助添加碳化矽粉末於放電加工模具鋼SKD61之研究
★ Inconel 718 鎳基超合金異形電極微孔放電加工之研究★ 實驗分析研究應用於減低數據中心伺服器硬碟之結構傳遞振動
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-14以後開放)
摘要(中) 二氧化鋯陶瓷具有硬度高、耐高溫、耐磨耗、抗腐蝕等特性,屬不易加工之硬脆材料,於進行傳統機械微孔鑽削加工時,螺旋鑽針會因磨耗過大導致切削力急遽的增加,從而使微孔入、出口周圍易產生大面積且不規則的脆裂情形,必須加以克服。本研究是利用超音波振動輔助啄鑽式加工方法,針對二氧化鋯陶瓷材料進行微孔鑽削加工之研究,並探討於各種鑽削加工方式與參數條件下如進給速度、啄鑽量、超音波功率及主軸轉速等,對微孔鑽削加工後材料品質特性的影響,而材料品質特性包含有微孔入、出口破裂面積值、刀具切削刃圓角變化量以及實際微孔平均孔直徑值。微孔鑽削加工實驗後,係以光學顯微影像量測儀(OM)對微孔入、出口周圍破裂形貌進行觀察,再以雷射共軛焦掃描顯微鏡(LSCM)進行微孔入、出口處破裂面積與實際微孔平均孔直徑之量測,最後利用掃描式電子顯微鏡(SEM)微觀分析微孔出口處破裂形貌與加工後螺旋鑽針切刃形貌。實驗結果顯示,超音波振動輔助啄鑽式加工方法,可以有效的排除鑽削過程中的切屑與加工熱能,從而減少加工時所產生的切削力,達到降低螺旋鑽針磨耗與獲得較佳的微孔品質,根據實驗結果,於進給速度0.15 mm/min、啄鑽量15 μm、超音波功率等級Level 2以及主軸轉速9000 rpm之較佳加工參數組合下,可獲得較小的微孔入口破裂面積16328.06 μm²以及較小的微孔出口破裂面積24951.72 μm²,相較於傳統的機械鑽削加工方法,微孔入口破裂面積值減少了48.99 %,而微孔出口破裂值減少87.73 %,且實際微孔平均孔直徑值及螺旋鑽針切削刃圓角變化量也都得到了改善。
摘要(英) Zirconia ceramics possess characteristics such as high hardness, high temperature resistance, wear resistance, and corrosion resistance, making them hard and brittle materials that are difficult to process. During traditional mechanical micro-drilling, spiral drill bits suffer from excessive wear, leading to a rapid increase in cutting force. This results in large, irregular fractures around the micro-hole entrances and exits, which need to be addressed. This study employs an ultrasonic vibration assisted pecking drilling method to conduct micro-hole drilling on zirconium dioxide materials. It explores the effects of various drilling methods and parameter conditions, such as feed rate, pecking depth, ultrasonic power and spindle speed on the quality characteristics of the drilled micro-holes. These quality characteristics include the chipping area at the inlets and outlet, variation of arc radius of the drill bit and the average hole diameters. After the micro-drilling experiments, an optical microscope (OM) was used to observe the chipping morphology around the micro-hole inlets and outlet. A laser confocal scanning microscope (LSCM) measured the chipping area and the average hole diameters. Finally, a scanning electron microscope (SEM) conducted a micro-analysis of the fracture morphology at the micro-hole outlet and the cutting edge morphology of the drill bits post-machining. The experimental results show that the ultrasonic vibration assisted pecking drilling method effectively discharges chips and machining heat during the drilling process, reducing the cutting force and thereby decreasing drill bit wear and improving micro-hole quality. According to the experimental results, an optimal parameter combination of 0.15 mm/min feed rate, 15 μm pecking depth, Level 2 ultrasonic power, and 9000 rpm spindle speed achieved a smaller micro-hole chipping area of 16328.06 μm² at the inlet and a smaller micro-hole chipping area of 24951.72 μm² at the outlet. Compared to traditional mechanical drilling methods, the micro-hole inlet chipping area was reduced by 48.99%, and the micro-hole outlet chipping area was reduced by 87.73%. Additionally, improvements were observed in the average hole diameter and the variation of arc radius of the drill bit.
關鍵字(中) ★ 二氧化鋯陶瓷
★ 啄鑽加工
★ 超音波振動
★ 微孔加工
關鍵字(英) ★ zirconium dioxide
★ Pecking drilling
★ ultrasonic vibration assist
★ drilling
論文目次 摘 要 i
ABSTRACT iii
誌 謝 v
目 錄 vi
圖目錄 ix
表目錄 xii
第一章 緒論 1
1-1研究背景 1
1-2研究動機與目的 2
1-3文獻回顧 4
1-4論文架構 14
第二章 實驗基礎原理 15
2-1切削加工原理[63] 15
2-2鑽削加工理論[63, 64] 15
2-3啄鑽加工理論[63] 17
2-4超音波振動輔助原理[6, 47] 18
2-4-1超音波加工的分類[18, 40] 18
2-5超音波振動輔助鑽削加工原理[65, 66] 20
2-6脆性材料的移除模式[16] 21
2-6-1脆性材料裂紋形成機制 21
2-6-2高靜壓力下脆性轉變延性[15, 24] 22
2-6-3臨界切削深度中延性切削轉變脆性切削模式[22] 22
第三章 實驗設備與材料 23
3-1實驗簡介 23
3-2實驗設備 24
3-2-1 CNC高速切削加工中心機 24
3-2-2超音波振動設備 24
3-2-3鑽削刀具 26
3-2-4切削液 27
3-2-5超音波清洗機 27
3-2-6金相切割機 28
3-2-7 CBN砂輪切片 28
3-2-8平面磨床 29
3-2-9鑽石砂輪 29
3-2-10超音波振幅量測器 30
3-2-11槓桿式千分錶 31
3-2-12 Z軸高度設定器 31
3-2-13光學顯微影像量測儀 32
3-2-14掃描式電子顯微鏡(SEM) 32
3-2-15雷射共軛焦掃描顯微鏡(LSCM) 33
3-3實驗夾具 34
3-4實驗材料 34
3-5實驗流程與方法 35
3-6實驗試片製作 36
3-7參數設定 36
3-8孔徑量測方法 37
3-9破裂面積量測方法 37
3-10刀具磨耗量測方法 38
第四章 結果與討論 40
4-1不同的輔助方法對二氧化鋯陶瓷鑽削之影響 40
4-2不同的進給速度對二氧化鋯陶瓷鑽削之影響 48
4-3不同的啄鑽量對二氧化鋯陶瓷鑽削之影響 54
4-4不同的超音波功率對二氧化鋯陶瓷鑽削之影響 60
4-5不同的主軸轉速對二氧化鋯陶瓷鑽削之影響 67
4-6二氧化鋯陶瓷破裂型態分析 73
4-7鑽針磨耗觀察 76
第五章 結論 78
未來展望 80
參考文獻 81
參考文獻 [1] Y. Zhaojun, L. Wei, C. Yanhong, and W. Lijiang, "Study for increasing micro-drill reliability by vibrating drilling", Reliability engineering & system safety, vol. 61, no. 3, pp. 229-233, 1998.
[2] K. Egashira, K. Mizutani, and T. Nagao, "Ultrasonic vibration drilling of microholes in glass", CIRP Annals, vol. 51, no. 1, pp. 339-342, 2002.
[3] H. Paris, S. Tichkiewitch, and G. Peigne, "Modelling the vibratory drilling process to foresee cutting parameters", CIRP annals, vol. 54, no. 1, pp. 367-370, 2005.
[4] E. Rahim and H. Sasahara, "A study of the effect of palm oil as MQL lubricant on high speed drilling of titanium alloys", Tribology international, vol. 44, no. 3, pp. 309-317, 2011.
[5] H. Wakabayashi, R. Koike, Y. Kakinuma, T. Aoyama, H. Shimada, and S. Hamada, "Ultrasonic-vibration-assisted micromachining of sapphire", in Materials Science Forum, vol. 874: Trans Tech Publ, pp. 247-252, 2016.
[6] J. Wang, J. Zhang, P. Feng, and P. Guo, "Damage formation and suppression in rotary ultrasonic machining of hard and brittle materials: a critical review", Ceramics International, vol. 44, no. 2, pp. 1227-1239, 2018.
[7] D. W. Kim, M.-W. Cho, T.-I. Seo, and E.-S. Lee, "Application of design of experiment method for thrust force minimization in step-feed micro drilling", Sensors, vol. 8, no. 1, pp. 211-221, 2008.
[8] T. Jagadesh, "The Influence of graphite, MOS2 and Blasocut lubricant on hole and chip geometry during peck drilling of aerospace alloy", Materials Today: Proceedings, vol. 24, pp. 690-697, 2020.
[9] K. Phapale, R.Singh, and R. Singh, "Comparative assessment of delamination control techniques in conventional drilling of CFRP", Procedia Manufacturing, vol. 48, pp. 123-130, 2020.
[10] X. Xiao, K. Zheng, W. Liao, and H. Meng, "Study on cutting force model in ultrasonic vibration assisted side grinding of zirconia ceramics", International Journal of Machine Tools and Manufacture, vol. 104, pp. 58-67, 2016.
[11] T. R. Lin, "Cutting behavior of a TiN-coated carbide drill with curved cutting edges during the high-speed machining of stainless steel", Journal of Materials Processing Technology, vol. 127, no. 1, pp. 8-16, 2002.
[12] K. Noma, Y. Takeda, T. Aoyama, Y. Kakinuma, and S. Hamada, "High-precision and high-efficiency micromachining of chemically strengthened glass using ultrasonic vibration", Procedia CIRP, vol. 14, pp. 389-394, 2014.
[13] P. Feng, J. Wang, J. Zhang, and J. Zheng, "Drilling induced tearing defects in rotary ultrasonic machining of C/SiC composites", Ceramics International, vol. 43, no. 1, pp. 791-799, 2017.
[14] 鄭富堯,"超音波振動輔助加工玻璃材料之參數分析",國立聯合大學, 2019.
[15] P. Bridgman and I. Simon, "Effects of very high pressures on glass", in Papers 169-199: Harvard University Press, pp. 4291-4299, 1964.
[16] B. Lawn and R. Wilshaw, "Indentation fracture: principles and applications", Journal of materials science, vol. 10, pp. 1049-1081, 1975.
[17] T. G. Bifano, T. A. Dow, and R. O. Scattergood, "Ductile-regime grinding: a new technology for machining brittle materials", 1991.
[18] Z. Pei, D. Prabhakar, P. Ferreira, and M. Haselkorn, "Rotary ultrasonic drilling and milling of ceramics", Ceramic Transactions, vol. 49, pp. 185-185, 1995.
[19] T. Lin and R.-F. Shyu, "Improvement of tool life and exit burr using variable feeds when drilling stainless steel with coated drills", The International Journal of Advanced Manufacturing Technology, vol. 16, pp. 308-313, 2000.
[20] R. Neugebauer and A. Stoll, "Ultrasonic application in drilling", Journal of materials processing technology, vol. 149, no. 1-3, pp. 633-639, 2004.
[21] Y. Chen and Y. Liao, "Study on wear mechanisms in drilling of Inconel 718 superalloy", Journal of Materials Processing Technology, vol. 140, no. 1-3, pp. 269-273, 2003.
[22] K. Liu, X. Li, M. Rahman, and X. Liu, "A study of the cutting modes in the grooving of tungsten carbide", The International Journal of Advanced Manufacturing Technology, vol. 24, pp. 321-326, 2004.
[23] 蔡建南,"玻璃螢幕面板高轉速加工之研究,逢甲大學,2009.
[24] M. Sajjadi, M. Malekian, S. S. Park, and M. B. Jun, "Investigation of micro scratching and machining of glass", in International Manufacturing Science and Engineering Conference, vol. 43628, pp. 401-408, 2009.
[25] Y. Peng, Y. Wu, Z. Liang, Y. Guo, and X. Lin, "An experimental study of ultrasonic vibration-assisted grinding of polysilicon using two-dimensional vertical workpiece vibration", The International Journal of Advanced Manufacturing Technology, vol. 54, pp. 941-947, 2011.
[26] 楊忠義,許富銓,蕭美技,李正雄,"超音波振動輔助加工於玻璃材料加工研究",工程科技與教育學刊,vol. 7, no. 1, pp. 64-74, 2010.
[27] B. Lauwers et al., "Investigation of the process-material interaction in ultrasonic assisted grinding of ZrO2 based ceramic materials", in Proceedings of the 4th CIRP International Conference on High Performance Cutting, pp. 1-6, 2010.
[28] M. Arif, M. Rahman, and W. Y. San, "Analytical model to determine the critical feed per edge for ductile–brittle transition in milling process of brittle materials", International Journal of Machine Tools and Manufacture, vol. 51, no. 3, pp. 170-181, 2011.
[29] B. Azarhoushang and T. Tawakoli, "Development of a novel ultrasonic unit for grinding of ceramic matrix composites", The International Journal of Advanced Manufacturing Technology, vol. 57, pp. 945-955, 2011.
[30] W. Gu, Z. Yao, and H. Li, "Investigation of grinding modes in horizontal surface grinding of optical glass BK7", Journal of materials processing technology, vol. 211, no. 10, pp. 1629-1636, 2011.
[31] M. Arif, M. Rahman, and W. Y. San, "Ultraprecision ductile mode machining of glass by micromilling process", Journal of Manufacturing Processes, vol. 13, no. 1, pp. 50-59, 2011.
[32] H. Isobe, Y. Uehara, and K. Hara, "Effect of ultrasonic vibration drilling on cutting stress distribution", Key Engineering Materials, vol. 523, pp. 191-196, 2012.
[33] R. Tsuboi, Y. Kakinuma, T. Aoyama, H. Ogawa, and S. Hamada, "Ultrasonic vibration and cavitation-aided micromachining of hard and brittle materials", Procedia CIRP, vol. 1, pp. 342-346, 2012.
[34] C. L. Zhang, P. F. Feng, Z. J. Pei, and W. L. Cong, "Rotary ultrasonic machining of sapphire: feasibility study and designed experiments", Key Engineering Materials, vol. 589, pp. 523-528, 2014.
[35] D. Lv, H. Wang, Y. Tang, Y. Huang, and Z. Li, "Influences of vibration on surface formation in rotary ultrasonic machining of glass BK7", Precision Engineering, vol. 37, no. 4, pp. 839-848, 2013.
[36] Y. Wang, B. Lin, S. Wang, and X. Cao, "Study on the system matching of ultrasonic vibration assisted grinding for hard and brittle materials processing", International Journal of Machine Tools and Manufacture, vol. 77, pp. 66-73, 2014.
[37] J. Kumar, "Ultrasonic machining—a comprehensive review", Machining Science and Technology, vol. 17, no. 3, pp. 325-379, 2013.
[38] Z. Jianhua, Z. Yan, Z. Shuo, T. Fuqiang, G. Lanshen, and D. Ruizhen, "Study on effect of ultrasonic vibration on grinding force and surface quality in ultrasonic assisted micro end grinding of silica glass", Shock and Vibration, vol. 2014, 2014.
[39] O. Ohnishi et al., "Grinding", in Handbook of Ceramics Grinding and Polishing: Elsevier, pp. 133-233, 2015.
[40] R. P. Singh and S. Singhal, "Rotary ultrasonic machining: a review", Materials and manufacturing processes, vol. 31, no. 14, pp. 1795-1824, 2016.
[41] H. Wang, F. Ning, Y. Hu, P. Fernando, Z. J. Pei, and W. Cong, "Surface grinding of carbon fiber–reinforced plastic composites using rotary ultrasonic machining: effects of tool variables", Advances in Mechanical Engineering, vol. 8, no. 9, p. 1687814016670284, 2016.
[42] X. F. Song, J.-J. Yang, H.-T. Ren, B. Lin, Y. Nakanishi, and L. Yin, "Ultrasonic assisted high rotational speed diamond machining of dental glass ceramics", The International Journal of Advanced Manufacturing Technology, vol. 96, pp. 387-399, 2018.
[43] J. Dai et al., "Finite element implementation of the tension-shear coupled fracture criterion for numerical simulations of brittle-ductile transition in silicon carbide ceramic grinding", International Journal of Mechanical Sciences, vol. 146, pp. 211-220, 2018.
[44] Z. Li, K. Zheng, W. Liao, and X. Xiao, "Tribological properties of surface topography in ultrasonic vibration-assisted grinding of zirconia ceramics", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 232, no. 22, pp. 4203-4215, 2018.
[45] Z. Liang et al., "Ultrasonic cavitation and vibration hybrid-assisted micro-drilling of stainless steel", The International Journal of Advanced Manufacturing Technology, vol. 104, pp. 3073-3082, 2019.
[46] Z. Yang, L. Zhu, B. Lin, G. Zhang, C. Ni, and T. Sui, "The grinding force modeling and experimental study of ZrO2 ceramic materials in ultrasonic vibration assisted grinding", Ceramics International, vol. 45, no. 7, pp. 8873-8889, 2019.
[47] 蔡明義,林岳鋒,張嘉泰,楊家豪,"超音波振動輔助難切削材加工之研究",機械新刊,2019.
[48] Y. Liu, Z. Liu, X. Wang, and T. Huang, "Experimental study on tool wear in ultrasonic vibration–assisted milling of C/SiC composites", The International Journal of Advanced Manufacturing Technology, vol. 107, pp. 425-436, 2020.
[49] M. Baraheni and S. Amini, "Predicting subsurface damage in silicon nitride ceramics subjected to rotary ultrasonic assisted face grinding", Ceramics International, vol. 45, no. 8, pp. 10086-10096, 2019.
[50] B. M. Abdo, S. Anwar, and A. El-Tamimi, "Machinability study of biolox forte ceramic by milling microchannels using rotary ultrasonic machining", Journal of manufacturing processes, vol. 43, pp. 175-191, 2019.
[51] J. Chen, Q. An, W. Ming, and M. Chen, "Hole exit quality and machined surface integrity of 2D Cf/SiC composites drilled by PCD tools", Journal of the European Ceramic Society, vol. 39, no. 14, pp. 4000-4010, 2019.
[52] X. Zhang, L. Yang, Y. Wang, B. Lin, Y. Dong, and C. Shi, "Mechanism study on ultrasonic vibration assisted face grinding of hard and brittle materials", Journal of Manufacturing Processes, vol. 50, pp. 520-527, 2020.
[53] J.-J. Chang, "超音波輔助磨削 AGC 玻璃加工之研究", National Central University, 2020.
[54] F. Pashmforoush, R. Farshbaf Zinati, and D. Maleki, "Investigation of ultrasonic vibration on thrust force, surface integrity, and geometrical tolerances during drilling of natural filler reinforced composites", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 234, no. 20, pp. 4041-4055, 2020.
[55] E. Uhlmann, F. Protz, and N. Sassi, "Ultrasonic assisted drilling of cemented carbide", Procedia CIRP, vol. 101, pp. 222-225, 2021.
[56] Y. Yue, B. Zhao, B. Wu, and W. Ding, "Undeformed chip thickness and machined surface roughness in radial ultrasonic vibration-assisted grinding process", The International Journal of Advanced Manufacturing Technology, vol. 123, no. 1, pp. 299-311, 2022.
[57] K. Zeng et al., "Experimental research on micro hole drilling of polycrystalline Nd: YAG", Ceramics International, vol. 48, no. 7, pp. 9658-9666, 2022.
[58] R. Bertolini, N. T. Alagan, A. Gustafsson, E. Savio, A. Ghiotti, and S. Bruschi, "Ultrasonic vibration and cryogenic assisted drilling of aluminum-CFRP composite stack–an innovative approach", Procedia CIRP, vol. 108, pp. 94-99, 2022.
[59] F. Chen, W. Bie, X. Wang, and B. Zhao, "Longitudinal-torsional coupled rotary ultrasonic machining of ZrO2 ceramics: an experimental study", Ceramics International, vol. 48, no. 19, pp. 28154-28162, 2022.
[60] F. Liu, T. Chen, Z. Duan, Y. Suo, and C. Zhang, "Ultrasonic assisted pecking drilling process for CFRP/Ti laminated materials", Journal of Manufacturing Processes, vol. 108, pp. 834-851, 2023.
[61] Z. Sun et al., "Introducing transversal vibration in twist drilling: Material removal mechanisms and surface integrity", Journal of Materials Processing Technology, vol. 325, p. 118296, 2024.
[62] H. Yang, G. Zhao, Z. Nian, L. Xin, L. Li, and N. He, "Effect of PCD tool wear on surface morphology and material removal mechanisms in the micro-drilling of Cf/SiC composites: Experiment and simulation", International Journal of Refractory Metals and Hard Materials, vol. 119, p. 106562, 2024.
[63] 蘇春熺,機械製造概論第七版,歐亞書局,103年08月。
[64] 傅光華,切削刀具學,高立圖書,1997.
[65] X. Peng, L. Li, Y. Yang, G. Zhao, and T. Zeng, "Experimental study on rotary ultrasonic vibration assisted drilling rock", Advances in space research, vol. 67, no. 1, pp. 546-556, 2021.
[66] M. Wang, H. Yu, J. Xu, G. Chen, B. Dai, and S. Wang, "Amplitude effect on micro-hole drilling of 3D needled Cf/SiC by ultrasonic vibration", Ceramics International, vol. 47, no. 24, pp. 34987-35001, 2021.
[67] 創國精密股份有限公司,"PCB/BCA鑽頭",取自https://www.pcbshop.org/tw/supplier/product_details.asp?ProID=2059&SupID=625,2023.
[68] 王政捷,"直結式迴轉超音波加工優化參數與刀具磨耗特性之研究",國立高雄應用科技大學,2015.
[69] 曾一中,"迴轉超音波主軸結合撓性刀把用於硬質合金材表面研判之研究",國立高雄科技大學,2017.
指導教授 崔海平(Hai-Ping Tsui) 審核日期 2024-8-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明