博碩士論文 111624003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:3.147.64.185
姓名 林禹昇(Yu-Sheng Lin)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 考慮異質性膨潤土內氣體遷移之多相流與力學耦合數值模擬
(Numerical Simulation of Coupled Multiphase Fluid Flow and Mechanics for Gas Migration in Bentonite Considering Heterogeneous Distributions)
相關論文
★ 單井垂直循環流場追蹤劑試驗數學模式發展★ 斷層對抽水試驗洩降反應之影響
★ 漸近型式尺度延散度之一維移流-延散方程式之Laplace轉換級數解★ 延散效應對水岩交互作用反應波前的影響
★ 異向垂直循環流場溶質傳輸分析★ 溶解反應對碳酸岩孔隙率與水力傳導係數之影響
★ 濁水溪沖積扇地下水硝酸鹽氮污染潛勢評估與預測模式建立★ 異向含水層部分貫穿井溶質傳輸分析
★ 溶解與沈澱反應對碳酸鈣礦石填充床孔隙率與水力傳導係數變化之影響★ 有限長度圓形土柱實驗二維溶質傳輸之解析解
★ 第三類注入邊界條件二維圓柱座標移流-延散方程式解析解發展★ 側向延散對雙井循環流場追蹤劑試驗溶質傳輸的影響
★ 關渡平原地下水流動模擬★ 應用類神經網路模式推估二維徑向收斂流場追蹤劑試驗縱向及側向延散度
★ 關渡濕地沉積物中砷之地化循環與分布★ 結合水質變異與水流模擬模式評估屏東平原地下水適合飲用之區域
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-1以後開放)
摘要(中) 高階放射性廢棄物最終處置方式為深層地質處置,以多重障壁概念,將廢棄物包覆在處置罐中,並運至地層至少三百公尺以下的岩體中,再填滿緩衝材料,藉由隔離、遲滯原理以確保廢棄物衰變到無害程度,與生物圈隔離,保護民眾健康及環境安全。然而,經處置數百年後,廢棄物自身衰變產生熱,處置系統溫度隨之上升,熱膨脹使應力改變,進而造成水力及化學效應產生。在低氧環境下金屬廢棄物罐腐蝕、輻解作用、微生物降解均可能產生氣體,隨著氣體持續累積,一旦作用在緩衝材料上的應力無法承受氣體壓力,孔隙將逐漸擴張並產生裂隙,氣體藉此流出至岩體,影響處置系統之能力,造成安全性的危險。因此,緩衝材料在系統中扮演著極為關鍵的角色,膨潤土為常見的緩衝材料選擇,在實際情況下,膨潤土含有不同的顆粒排列、孔隙率和滲透率,呈現異質性的空間分佈,這種異質性可能在高孔隙率及疏鬆顆粒排列之區域,形成優先通道,使氣體更容易流通,進而影響氣體的遷移行為。因此,本研究成功地利用THMC7.1數值模式顯示氣體壓力累積之變化,並以異質性膨潤土進行模擬,其結果確定異質性分佈所產生的氣體優先通道確實會影響氣體速度。
摘要(英) The final disposal method for high-level waste is Deep Geological Disposal. This is where nuclear waste is buried in geological formations at depths greater than 300 meters, and canister and buffer materials are used to cover and secure it. By the principles of isolation and retardation, the waste decays harmlessly, isolating it from the biosphere and ensuring human health and environmental safety. However, after hundreds of years of disposal, gas may be generated due to the corrosion of metallic materials under anoxic conditions, the radiolysis of water or microbial degradation. With continuous gas pressure accumulation, the stress on buffer materials can no longer withstand it, leading to pathway dilation and fractures, allowing gas to escape. As gas degrades the barrier′s capability, endangering the safety of the repository. Therefore, buffer materials play a crucial role in the repository, bentonite is commonly chosen as the buffer materials. In practical situations, bentonite exhibits different particle arrangements, porosity, and permeability, presenting heterogeneous distributions. This heterogeneity may lead to the formation of preferential pathways, particularly in regions with high porosity and loose particle arrangements, making gas flow more accessible and consequently influencing the gas migration behavior. Therefore, this study successfully utilized the THMC7.1 numerical model to demonstrate the changes in gas pressure accumulation. Simulations with heterogeneous bentonite confirmed that the preferential pathways created by heterogeneous distribution significantly affect gas velocity.
關鍵字(中) ★ 深層地質處置
★ 異質性膨潤土
★ 氣體遷移
★ 多相流
★ 耦合數值模擬
關鍵字(英) ★ Deep Geological Disposal
★ Heterogeneous bentonite
★ Gas migration
★ Multiphase fluid flow
★ Coupled numerical simulation
論文目次 摘要 i
ABSTRACT ii
致謝 iii
圖目錄 vii
表目錄 x
符號說明 xi
一、緒論 1
1-1前言 1
1-2研究目的 2
1-3研究流程 2
二、文獻回顧 4
2-1高放射性廢棄物處置概念 4
2-2熱-水-力-化耦合關係 6
2-3氣體形成與遷移之影響 9
三、分析理論與數值模擬方法 14
3-1多相流體相關理論 14
3-1-1飽和度 15
3-1-2利用界面張力和接觸角判斷流體之濕潤度 15
3-1-3毛細壓力與飽和度之間關係 16
3-1-4 Darcy定律 22
3-1-5經驗公式 26
3-2 THMC7.1數值模式介紹 30
3-3 THMC7.1數值模式之控制方程式 31
3-3-1多相流模組 31
3-3-2熱傳模組 36
3-3-3力學模組 37
3-3-4化學模組 39
3-4耦合熱傳-多相流-力學-化學分析 40
四、結果與討論 41
4-1實驗室實驗數據 41
4-2模型建置 45
4-3網格收斂性分析 46
4-4參數敏感度分析 49
4-5模擬設定 53
4-5-1網格設定 53
4-5-2參數設定 54
4-5-3初始條件 57
4-5-4邊界條件 58
4-6模擬結果與討論 62
4-6-1參數率定 62
4-6-2模擬結果 64
4-7考慮異質性膨潤土之結果與討論 70
4-7-1利用滲透率設定之結果 71
4-7-2利用孔隙率設定之結果 73
五、結論與建議 75
5-1結論 75
5-2建議 76
參考文獻 77
附錄A 80
附錄B 83
B-1 THMC7.1數值模式演進歷程 83
B-2有限元素法 84
B-2-1基本概念 84
B-2-2元素形狀 84
B-2-3加權殘餘法 87
B-2-4 Galerkin法 90
B-2-5有限元素法之控制方程式推導 90
參考文獻 1.Bernier, F., Lemy, F., Cannière, P.D., Detilleux, V., “Implications of safety requirements for the treatment of THMC processes in geological disposal systems for radioactive waste” Journal of Rock Mechanics and Geotechnical Engineering, 9, 428434, 2017.
2.Brooks, R.H., Corey, A.T., ”Hydraulic Properties of Porous Media”, Hydrology Paper 3, Colorado State University, Fort Collins, CO, 1964.
3.EA, “Gas generation and migration from a deep geological repository for radioactive waste A review of Nirex/NDA’s work” Environment Agency, 2008.
4.Fetter, C.W., Boving, T., Kreamer, D., “Contaminant Hydrogeology” Third Edition, 2018.
5.Gonzalez-Blanco, L., Romero, E., Marschall, P., “Gas transport in a granular compacted bentonite: coupled hydro-mechanical interactions and microstructural features” E3S Web of Conferences, 195, 04008, 2020.
6.Istok, J., “Groundwater Modeling by the Finite Element Method” American Geophysical Union, Washington, 1989.
7.Lai, S. H., Chen, J.S., Yang, Y.H., “Coupled multiphase flow and viscoelastic mechanics modeling of gas injection in a compacted bentonite buffer” Geomechanics for Energy and the Environment, 38, 100537, 2024.
8.Lee, C., Lee, J., Kim, GY., ”Numerical analysis of coupled hydro-mechanical and thermo-hydro-mechanical behaviour in buffer materials at a geological repository for nuclear waste: Simulation of EB experiment at Mont Terri URL and FEBEX at Grimsel test site using Barcelona basic model” International Journal of Rock Mechanics & Mining Sciences, 139, 104663, 2021.
9.Manepally, C., Fedors, R., Evaluation of Coupled Thermal-Hydrological-Mechanical-Chemical Processes for Deep Disposal in Different Geologic Media, USNRC, 2023.
10.Marschall, P., Horseman, S., Gimmi, T., “ Characterisation of Gas Transport Properties of the Opalinus Clay, a Potential Host Rock Formation for Radioactive Waste Disposal” Oil & Gas Science and Technology, 60(1), 121-139, 2005.
11.NDA, “Geological Disposal Gas Status Report” Radioactive Waste Management, no. DSSC/455/01, 2006.
12.Parker, J.C., Lenhard, R.J., Kuppusam, T.Y., ”A parametric model for constitutive properties govern¬ing multiphase flow in porous media” Water Resour. Res., 23, 618-624, doi: 10.1029/WR023i004p00618, 1987.
13.Radeisen, E., Shao, H., Hesser, J., Kolditz, O., Xu, W., Wang, W.,” Simulation of dilatancy-controlled gas migration processes in saturated bentonite using a coupled multiphase flow and elastoplastic H2M model” Journal of Rock Mechanics and Geotechnical Engineering, 15, 803813, 2023.
14.Rodwell, W.R., Harris, A.W., Horseman, S.T., Lalieux, P., Muller, W., Ortiz Amaya, L., Pruess, K., “ Gas Migration and Two-phase Flow through Engineered and Geological Barriers for a Deep Repository for Radioactive Waste” A Joint EC/NEA Status Report Published by the EC, European Commission Report EUR, 19122, 1999.
15.Tamayo-Mas, E.T., Harrington, J.F., Brüning, T., Shao, H., Dagher, E.E., Lee, J., Kim, K., Rutqvistm, J., Kolditz, O., Lai, S.H., Chittenden, N., Wang, Y., Damians, I.P., Olivella, S.,” Modelling advective gas flow in compact bentonite: Lessons learnt from different numerical approaches” International Journal of Rock Mechanics and Mining Sciences, 139, 104580, 2021.
16.Tsai, C.H., Yeh, G.T., “Retention Characteristics for Multiple-PhaseFluid Systems” Terrestrial, Atmospheric and Oceanic Sciences, 23(4), 451-458, 2012.
17.Tuller, M., Or, D., “Water retention and characteristic curve” Encyclopedia of Soils in the Environment, 4, 278-289, 2004.
18.Van Genuchten, M. Th., ”A closed-form equation for predicting the hydraulic conductivity of unsaturated soils” Soil Sci. Soc. Am. J., 44, 892-898, doi: 10.2136/sssaj1980.03615995004400050002x, 1980.
19.台灣電力公司,高放射性廢棄物地下實驗室觀摩與討論會議,行政院及所屬各機關出國報告,出國報告,2018。
20.何昆芳,機車零組件熱鍛預成形設計與成形性分析,國立高雄應用科技大學機械工程系,碩士論文,2018。
21.林文勝,用過核子燃料處置設施受熱力-水力-力學-化學耦合作用之國際發展現況研究,科技部補助專題研究計畫成果報告,期末報告,2016。
22.張瑞宏,深地層處置設施緩衝材料熱-水力-力學耦合模擬研析,行政院原子能委員會放射性物料管理局,期末報告,2015。
23.曾燕翔,動態毛細壓力於土壤保水曲線之變化分析及現地長期入滲監測試驗,國立臺灣海洋大學應用地球科學研究所,碩士論文,2016。
24.蔡純純,孔彈性介質熱-水-力耦合行為之數值模擬,國立成功大學資源工程研究所,碩士論文,2005。
指導教授 陳瑞昇(Jui-Sheng Chen) 審核日期 2024-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明