博碩士論文 108684002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:51 、訪客IP:18.223.195.1
姓名 余允辰(Yun-Chen Yu)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 裂隙岩體中跨尺度與複雜單元之地下水流與傳輸模擬
(Groundwater Flow and Transport Modeling with Multi-scale and Complicated Units in Fractured Rocks)
相關論文
★ 延散效應對水岩交互作用反應波前的影響★ 序率譜方法制定異質性含水層水井捕集區
★ 跨孔式注氣試驗方法推估異質性非飽和層土壤氣體流動參數★ 現地跨孔式抽水試驗推估異質性含水層水文地質特性
★ iTOUGH2應用於實驗室尺度非飽和土壤參數之推估★ HYDRUS-1D模式應用於入滲試驗推估非飽和土壤特性參數
★ 沿海含水層異質性對海淡水交界面影響之不確定性分析★ 非拘限砂質海岸含水層中潮汐和沙灘坡度水文動力條件影響苯傳輸
★ 利用MODFLOW配合SUB套件推估雲林地區垂向平均長期地層下陷趨勢★ 高雄平原地區抽水引致汙染潛勢評估
★ 利用自然電位法監測淺層土壤入滲歷程★ 利用LiDAR點雲及影像資料決定露頭節理結合面之研究
★ 臺灣西部沿海海水入侵與地下水排出模擬分析★ 三氯乙烯地下水污染場址整治後期傳輸行為分析¬-應用開源FreeFEM++有限元素模式架構
★ 都會地區滯洪池增設礫石樁之入滲效益模擬與分析★ 利用數值模擬探討二氧化碳於異向性及異質性鹽水層之遷移行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 裂隙岩體由裂隙與岩石基質組成,其差異甚大的導水特性致使地下水流與傳輸模擬工作備受挑戰;岩體中若額外存在工程結構物,其複合水力特性與跨尺度分析需求將額外提升議題的複雜程度。本研究以裂隙岩體中含處置設施物件的參考案例為研究對象,使用數值分析軟體DarcyTools進行跨尺度與複雜水力單元的模擬物件、計算網格、離散裂隙網路之生成,並藉由等效水力特性參數轉換後輸入數值網格執行穩態地下水流場及穩態鹽度分布模擬,同時藉由裂隙截切處置設施分析,作為潛在放射性核種準確的釋出位置並進行質點追蹤模擬;此外,藉由考慮水力傳導係數變異、多組實現值之有效離散裂隙網路及引入隨機漫步法所執行的一系列變異案例,以提升地下水模擬及傳輸分析之可信度。結果顯示本研究已完整執行裂隙岩體中具複雜單元及使用網格加密技術考慮不同尺度議題之地下水流與傳輸模擬,並成功後處理為性能與安全評估所需之功能測度值。變異案例的結果顯示母岩的水力傳導係數變異為主控地下水流及傳輸模擬的主要因素;多組有效離散裂隙網路結果則可增加實現值對於功能測度值之影響;隨機漫步法的使用則增加釋出途徑及其資訊的不確定性。研究結果可供處置計畫在地質調查與安全評估工作之參考。
摘要(英) The discrepancy in flow properties between fractures and the rock matrix in fractured rock formations has made flow and transport simulation challenging. Additionally, the presence of engineered components within fractured rock further complicates matters due to the composite hydraulic properties and the need for multi-scale analysis. This study focuses on deep geological disposal in fractured rock, employing the numerical analysis software DarcyTools to create simulation objects, computational grids, and generate discrete fracture networks. Equivalent hydraulic properties are converted to conduct steady-state groundwater flow and salinity distribution simulations. The analysis of intersections between fractures and the disposal facility serves as an accurate release point for potential radionuclides, and particle tracking simulations are employed to obtain transport information. By considering the variability of hydraulic parameters in hydrogeological units, realizations of effective discrete fracture networks, and involving the random walk particle tracking method, the credibility of groundwater flow simulation and transport analysis was enhanced. The results demonstrate that this study has successfully conducted groundwater flow and transport modeling in fractured rock for a deep geological repository. Post-processing was performed to provide performance measures for performance and safety assessments. The results of various cases indicate that the variability in hydraulic conductivity of the rock mass is the primary factor controlling groundwater flow and transport simulation. The use of the random walk method increases the uncertainty of release pathways, while multiple realizations of effective discrete fracture network results can amplify the impact of realizations on functional metrics. The findings of this study can serve as a reference for future geological surveys and safety assessment work in spent nuclear fuel final disposal projects.
關鍵字(中) ★ 裂隙岩體
★ 跨尺度
★ 地下水流模擬
★ 傳輸模擬
關鍵字(英) ★ fractured rock
★ multi-scale
★ groundwater flow simulation
★ transport simulation
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 viii
表目錄 xvii
一、緒論 1
1-1 研究動機與目的 1
1-2 研究流程 6
1-3 章節概述 10
二、文獻回顧 11
2-1 用過核子燃料最終處置 11
2-1-1 我國相關計畫、法規與規範 12
2-1-2 處置概念與國際典範 14
2-2 適用於結晶岩之地下水模擬方法與概念研析 16
2-2-1 離散法 16
2-2-2 連續法 21
2-3 離散裂隙網路實現值對於深層地質處置之地下水流及傳輸模擬影響 27
2-4 質點追蹤方法 31
2-4-1 傳統質點追蹤方法 31
2-4-2 隨機漫步質點追蹤方法 35
三、研究方法 37
3-1 參考案例說明 37
3-1-1 地下處置設施配置 37
3-1-2 水文地質概念模式 38
3-1-3 離散裂隙網路參數集 40
3-2 DarcyTools說明 47
3-2-1 地下水流控制方程式 47
3-2-2 鹽度傳輸流控制方程式 50
3-2-3 質點追蹤方法 51
3-2-4 離散裂隙網路 53
3-2-5 計算網格與等效水力特性參數轉換 55
3-2-6 功能測度值及安全功能指標 56
3-2-7 廢孔準則 59
四、模型建立與案例設定 63
4-1 模型建立 63
4-1-1 地下處置設施物件生成 63
4-1-2 水文地質概念模式之物件生成與整合 63
4-1-3 計算網格生成 64
4-1-4 離散裂隙網路生成、裂隙連通性分析及廢孔準則應用 66
4-1-5 等效水力特性參數轉換 67
4-1-6 邊界條件設定、穩態地下水及鹽度分布、質點追蹤模擬 67
4-2 案例設定 75
4-2-1 基本案例 75
4-2-2 水文地質單元及開挖損傷帶之水力特性參數變異案例 75
4-2-3 多組實現值之離散裂隙網路變異案例 76
4-2-4 考慮隨機漫步值點追蹤方法之變異案例 82
五、結果與討論 83
5-1 基本案例 83
5-2 水力傳導係數參數變異案例 88
5-2-1 R0之水力傳導係數變異案例 88
5-2-2 R#之水力傳導係數變異案例 89
5-2-3 F#之水力傳導係數變異案例 90
5-2-4 EDZ之水力傳導係數變異案例 91
5-2-5 水力傳導係數變異案例的Qeq與F結果 92
5-3 多組實現值之離散裂隙網路變異案例 105
5-3-1 使用有效離散裂隙網路之有效裂隙總數進行統計之結果與討論 105
5-3-2 使用潛在廢棄物罐失效數量之統計結果與討論 111
5-4 考慮隨機漫步質點追蹤方法之變異案例 117
5-4-1 質點追蹤法及隨機漫步法之累積分布函數比較 117
5-4-2 質點追蹤法及隨機漫步法之同釋放位置但不同方法比較 128
六、結論與建議 149
6-1 結論 149
6-2 建議 152
參考文獻 154
個人著作 169
附錄一 170
附錄二 172
附錄三 175
參考文獻 1. AbuAisha, M., Loret, B., Eaton, D., “Enhanced Geothermal Systems (EGS): Hydraulic fracturing in a thermo-poroelastic framework.” Journal of Petroleum Science and Engineering, Vol. 146, pp. 1179-1191, 2016.
2. Dershowitz, W., Ambrose, R., Lim, D.H., Cottrell, M., “Hydraulic Fracture and Natural Fracture Simulation for Improved Shale Gas Development,” In Proceedings of the AAPG Annual Convention and Exhibition, Houston, TX, USA, pp. 10-13, 2011.
3. Yan, B., Mi, L., Wang, Y., Tang, H., An, C., Killough, J.E, “Multi-porosity multi-physics compositional simulation for gas storage and transport in highly heterogeneous shales.” Journal of Petroleum Science and Engineering, Vo. 160, pp. 498-509, 2018.
4. Wang, H.Y., “Discrete fracture networks modeling of shale gas production and revisit rate transient analysis in heterogeneous fractured reservoirs,” Journal of Petroleum Science and Engineering, Vol. 169, pp. 796-812, 2018.
5. Hyman, J.D., Gable, C.W., Painter, S.L., Makedonska, N., “Conforming delaunay triangulation of stochastically generated three dimensional discrete fracture networks: A feature rejection algorithm for meshing strategy,” Journal of Scientific Computing, Vol. 36, pp. A1871-A1894, 2014.
6. Hyman, J.D., Karra, S., Makedonska, N., Gable, C.W., Painter, S.L., Viswanathan, H.S, “dfnWorks: A discrete fracture network framework for modeling subsurface flow and transport,” Computers & Geosciences, Vol. 84, pp. 10-19, 2015.
7. Makedonska, N.; Painter, S.; Bui, Q.; Gable, C.; Karra, S. Particle tracking approach for transport in three-dimensional discrete fracture networks. Computers & Geosciences, Vol, 19, pp. 1123-1137, 2015.
8. Zhang, Q.H., “Finite element generation of arbitrary 3-D fracture networks for flow analysis in complicated discrete fracture networks,” Journal of Hydrology, Vol. 529, pp. 890-908, 2015.
9. 林朝宗、何信昌,「從地質觀點探討我國核廢料最終處置之對策」,經濟部八十一年度研究發展專題,編號81009,經濟部,1992。
10. Kalbacher, T., Wang, W., McDermott, C., Kolditz, O., Taniguchi, T., “Development and application of a CAD interface for fractured rock,” Engineering Geology, Vol. 47, pp. 1017-1027, 2005.
11. 台灣電力公司,「用過核子燃料最終處置計畫書2006年核定版」,2006。
12. 台灣電力公司,「用過核子燃料最終處置計畫書2018年修訂版」,2019。
13. 台灣電力公司,「我國用過核子燃料最終處置技術可行性評估報告-SNFD2017報告」,用過核子燃料最終處置計畫潛在處置母岩特性調查與評估階段,TPC-SNFD2017-V1,台灣電力公司,第1-1頁至第8-43頁,2019。
14. 台灣電力公司,「用過核子燃料最終處置計畫書2022年修訂版」,2023。
15. 放射性物料管理法,取自https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=J0160015.
16. 放射性物料管理法施行細則,取自https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=J0160034.
17. 高放射性廢棄物最終處置及其設施安全管理規則,取自https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=J0160070.
18. 高放射性廢棄物最終處置設施場址規範,取自https://erss.nusc.gov.tw/law/LawContent.aspx?id=GL000065.
19. SKBF/KBS, “Final Storage of Spent Nuclear fuel–KBS-3, Summary,” Swedish Nuclear Fuel Supply Company/Division KBS, 1983.
20. SKB, “Long-term safety for the final repository for spent nuclear fuel at Forsmark, Main report of the SR-Site project,” TR-11-01, Svensk Kärnbränslehantering AB, 2011.
21. JNC, “H12: Project to establish the scientific and technical basis for HLW disposal in Japan, Project overview report,” JNC-T21410-2000-001, Japan Nuclear Cycle Development Institute, 2000.
22. 倪春發、余允辰、李奕賢、Vu, P. T.,「放射性廢棄物地質處置之地下水流動與傳輸分析」,土木水利,第四十八卷、第六期,2021。
23. Parsons, R.W., “Permeability of idealized fractured rock,” Society of Petroleum Engineers, Vol. 6, No. 2, pp. 126-136, 1966.
24. Wilson, C.R., Witherspoon, P.A., “Flow interference effects at fracture intersections,” Water Resources Research, Vol. 12, pp. 102-104, 1976.
25. Long, J.C.S., Gilmour, P., Witherspoon, P.A., “A model for steady fluid flow in random three-dimensional networks of disc-shaped fractures,” Water Resources Research, Vol. 21, pp. 1105-1115, 1985.
26. 李奕賢,「三維離散裂隙網路水流與溶質傳輸模式發展」,國立中央大學應用地質研究所博士論文,2016。
27. Long, J.C.S., Remer, J.S., Wilson, C.R., Witherspoon, P.A., “Porous media equivalents for networks of discontinuous fractures,” Water Resources Research, Vol. 18, pp. 645-658, 1982.
28. 吳宛庭,「三維裂隙網路升尺度方法推估等效參數之差異評估」,國立中央大學應用地質研究所碩士論文,2016。
29. Schwartz, F.W., Smith, L., Crowe, A.S., “A stochastic analysis of macroscopic dispersion in fractured media,” Water Resources Research, Vol. 19, pp. 1253-1265, 1983.
30. Smith, L., Schwartz, F.W., “An analysis of the influence of fracture geometry on mass transport in fractured media,” Water Resources Research, Vol. 20, pp. 1241-1252, 1984.
31. 李禎常,「破裂岩體地下水流與污染物平均傳輸統計分布性質之研究」,國立成功大學資源工程學系碩士論文,2004。
32. Andersson, J., Thunvik, R., “Predicting mass transport in discrete fracture networks with the aid of geometrical field data,” Water Resources Research, Vol. 22, pp. 1941-1950, 1986.
33. Andersson, J., Shapiro, A.M., Bear, J., “A stochastic model of a fractured rock conditioned by measured information,” Water Resources Research, Vol. 20, pp. 79-88, 1984.
34. Dverstorp, B., Andersson, J., Nordqvist, W., “Discrete fracture network interpretation of field tracer migration in sparsely fractured rock,” Water Resources Research, Vol. 28, pp. 2327-2343, 1992.
35. Gómez-Hernández, J.J., Franssen, H.J.H., Cassiraga, E.F., “Stochastic analysis of flow response in a three-dimensional fractured rock mass block,” International Journal of Rock Mechanics and Mining Sciences, Vol. 38, pp. 31-44, 2001.
36. Lin, B.S., Lee, C.H., “Percolation and dispersion of mass transport in saturated fracture network,” Water Resources Research, Vol. 12, pp. 409-432, 1998.
37. Lin, B.S., Lee, C.H., Yu, J.L., “Analysis of groundwater seepage of tunnels in fracture rock,” Journal of The Chinese Institute of Environment Engineers, Vol. 23, No. 3, pp. 155-160, 2000.
38. 林碧山,「破裂岩體地下水滲流與溶質傳輸」,國立成功大學資源工程學系博士論文,共135頁,2000.
39. De Dreuzy, J.R., Davy, P., Bour, O., “Hydraulic properties of two-dimensional random fracture networks following a power law length distribution: 1, Effective connectivity,” Water Resources Research, Vol. 37, pp. 2065-2078, 2001.
40. 李振誥、曾建豪、林宏奕、葉信富,「破裂面內寬模式之評估」,中國土木水利工程學刊,第21卷,第1期,第25-34頁,2009.
41. Park, Y.J., Lee, K.K., Kosakowski, G., Berkowitz, B., “Transport behavior in three-dimensional fracture intersections,” Water Resources Research, Vol. 39, p. 1215, 2003.
42. 李禎常,「破裂岩體地下水流與污染物平均傳輸統計分布性質之研究」,國立成功大學資源工程學系碩士論文,2004。
43. Nakaya, S., Nakamura, K., “Percolation conditions in fractured hard rocks: A numerical approach using the three-dimensional binary fractal fracture network (3D-BFFN) model,” Chemistry and Physics of Minerals and Rocks/Volcanology, Journal of Geophysical Research, Vol. 112, p. B12203, 2007.
44. 翁淑涵,「隧道破裂面露頭與湧水量關係之研究」,國立成功大學資源工程學系碩士論文,2007。
45. Frampton, A., Cvetkovic, V., “Significance of injection modes and heterogeneity on spatial and temporal dispersion of advecting particles in two-dimensional discrete fracture networks,” Advances in Water Resources, Vol. 32, pp. 649-658, 2009.
46. 林宏奕,「破裂岩體優勢水流路徑之研究」,國立成功大學資源工程研究所博士論文,共123頁,2009。
47. 李信和,「應用直接時間域粒子追蹤法模擬離散裂隙網路之溶質傳輸」,國立中正大學應用地球物理與環境科學研究所碩士論文,2009。
48. 潘建邦,「利用破裂面網路模式及透水係數張量探討地下水流動及溶質傳輸之研究」,國立成功大學資源工程研究所博士論文,2012。
49. 劉明坤,「離散裂隙網路數值模擬:以花蓮溪畔坑道花崗片麻岩體為例」,國立中正大學地球與環境科學系應用地球物理與環境科學碩士班,20104。
50. Barenblatt, G.I., Zheltov, I.P., Kochina, I.N., “Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks,” Journal of Applied Mathematics and Mechanics, Vol. 24, pp. 1286-1303, 1960.
51. Warren, J.E., Root, P.J., “The behavior of naturally fractured reservoirs,” Society of Petroleum Engineers, Vol. 3, pp. 245-255, 1963.
52. Huyakorn, P.S., Lester, B.H., Faust, C.R., “Finite element techniques for modeling groundwater flow in fractured aquifers,” Water Resources Research, Vol. 19, pp. 1019-1035, 1983.
53. Carslaw, H.S., Jaeger, J.C., “Conduction of Heat in Solids,” second edition, Oxford University Press, New York, 1986.
54. Moench, A.F., “Double-Porosity Models for a Fissured Groundwater Reservoir with Fracture Skin,” Water Resource Research, Vol. 20, No. 7, pp. 831-846, 1984.
55. Zimmerman, R.W., Chen, G., Hadgu, T., Bodvarsson, G.S., “A numerical dual-porosity model with semianalytical treatment of fracture/matrix flow,” Water Resources Research, Vol. 29, pp. 2127-2137, 1993.
56. Snow, D.T., “A parallel plate model of fractured permeable media,” University of California, Berkeley, 1965.
57. Weiss, L.E., “The Minor Structures of Deformed Rocks: A Photographic Atlas,” Springer-Verlag Berlin Heidelberg, 1972.
58. Chen, R.H., Lee, C.H., Chen, G.S., “Evaluation of transport of radioactive contaminant in fractured rock,” Environmental Geology, Vol. 41, pp. 440-450, 2001.
59. Khaleel, R., “Scale dependence of continuum models for fractured basalts,” Water Resource Research, Vol. 25, No. 8, pp. 1241-1252, 1984.
60. Rouleau, A., Gale, J.E., “Stochastic discrete fracture simulation of groundwater flow into an underground excavation in granite,” International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 24, pp. 99-112, 1987.
61. 陳榮華,「破裂安山岩體放射性核種傳輸之研究」,國立成功大學資源工程學系博士論文,2001。
62. Oda, M., “Permeability tensor for discontinuous rock masses,” Géotechnique, Vol. 35, pp. 483-495, 1985.
63. Wei, Z.Q., Egger, P., Descoeudres, F., “Permeability predictions for jointed rock masses,” International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 32, pp. 251-261, 1995.
64. Renshaw, C.E., “Influence of Subcritical Fracture Growth on the Connectivity of Fracture Network,” Water Resources Research, Vol. 32, pp. 1519-1530, 1996.
65. Jackson, C.P., Hoch, A.R., Todman, S., “Self‐consistency of a heterogeneous continuum porous medium representation of a fractured medium,” Water Resources Research, Vol. 36, pp. 189-202, 2000.
66. Novakowski, K.S., Bogan, J.D., “A semi-analytical model for the simulation of solute transport in a network of fractures having random orientations,” Internal Journal for Numerical and Analytical Method in Geomechanics, Vol. 23, pp. 317-333, 1999.
67. 台灣電力公司,「我國用過核子燃料最終處置初步安全論證報告-SNFD2021報告」,用過核子燃料最終處置計畫候選場址評選與核定階段,TPC-SNFD2021-V1,台灣電力公司,2023。
68. Joyce, S., Simpson, T., Hartley, L., Applegate, D., Hoek, J., Jackson, P., Swan, D., “Groundwater Flow Modelling of Periods with Temperate Climate Conditions—Forsmark,” R-09-20, Svensk Kärnbränslehantering AB, 2010.
69. Vidstrand, P., Follin, S., Zugec, N., “Groundwater Flow Modelling of Periods with Periglacial and Glacial Climate Conditions-Forsmark," R-09-21, Svensk Kärnbränslehantering AB, 2010.
70. Selroos, J.-O., Follin, S., “SR-Site Groundwater flow Modelling Methodology, Setup and Results,” R-09-22; Svensk Kärnbränslehantering AB, 2010.
71. Hartley, L., Follin., S., Selroos, J.-O., “Responses to SSM on Uncertainties in Hydrogeological Calculation, Question 1,” SKBdoc 1416510, Svensk Kärnbränslehantering AB, (2011).
72. Bear, J., “Dynamic of Fluids in Porous Media,” Amer. Elsevier, New York, 1972.
73. Nelson, R.W., “Evaluating the environmental consequences of groundwater contamination, Parts 1-4,” Water Resources research, Vol. 14, No. 3, pp. 409-455, 1978.
74. Javandel, I., Doughty, C., Tsang, C.F., “Groundwater Transport: Handbook of Mathematical Models, Water Resources Monograph 10,” Amer. Geophy. Union, Washington D.C., 1984.
75. Kinzelbach, W., “Groundwater Modelling: An Introduction with Sample Programs in BASIC,” Development in Water Science, Vol. 25, p. 334, 1986.
76. Bear, J., Verruijt, A., “Modeling Groundwater Flow and Pollution,” Springer Dordrecht, 1987.
77. Newsom, J.M., Wilson, J.L., “Flow of ground water to a well near a stream-effect of ambient ground-water flow direction,” Ground Water, Vol. 26, No. 6, pp. 703-711, 1988.
78. Pollock, D.W., “Semianalytical computation of path lines for finite-difference model,” Ground Water, Vol. 26, No. 6, pp. 743-750, 1988.
79. Pollock, D.W., “Documentation of computer programs to complete and display pathlines using results from the U.S. Geological Survey modular three-dimensional finite-difference ground-water model,” United States Geological Survey, Open File Report 89-381, 1989.
80. Zheng, C., “PATH3D,” S.S. Papadopulos & Assoc., Rockville, MD, 1989.
81. McDonald, M.G., Harbaugh, A.W., “A modular three-dimensional finite-difference ground-water flow model,” Techniques of Water-Resources Investigations 06-A1, United States Geological Survey, 1988.
82. Shafer, J.M., “Reverse pathline calculation of time related capture zones in nonuniform flow,” Ground Water, Vol. 25, No. 3, pp. 283-289, 1989.
83. Shafer, J.M., “GWPATH, Version 4.0,” Champaign, IL, 1990.
84. Blandford, T.N., Huyakorn, P.S., “WHPA: a modular semi-analytical model for the delineation of wellhead protection areas,” U.S. EPA, Office of Ground-Water Protection, 1990.
85. Kincaid, C.T., “FASTCHEMTM package, V.3: User’s guide to the ETUBE pathline and streamtube database code,” EPRI EA-5870-CCM, Electric Power Research Institute, 1988.
86. 李振誥,「破裂面網路中地下水質點傳輸之研究」,國立成功大學資源工程學系執行,行政院國家科學委員會補助,1994。
87. 項建昌,「數值模式於淺水方程式與理查方程式」,國立臺灣大學土木工程學研究所碩士論文,2014。
88. 方譚,「利用質點傳輸進行三維離散裂隙含水層內之化學反應傳輸模擬」,國立中央大學應用地質研究所碩士論文,2019。
89. Feehley, C.E., Zheng, C., Molz, F.J., “A dual-domain mass transfer approach for modelling solute transport in heterogeneous aquifers: application to the macrodispersion experiment (MADE) site,” Water Resources Research, Vol. 36, No. 9, pp. 2501-2515, 2000.
90. Scheidegger, A.E., “Statistical hydrodynamics in porous media,” Journal of Geophysical Research, Vol. 66, pp. 3273-3278, 1954.
91. Ahlstrom, S.W., Foote, H.P., Arnett, R.C., Cole, C.R., Serne, R.J., “Multi-component mass transport model: theory and numerical implementation (discrete parcel random walk version),” Rep. BNWL-2127, Battelle Pacific Northwest Lab., Richland, Washington, 1977.
92. Kinzelbach, W., “The random walk method in pollutant transport simulation. Advances in analytical and numerical groundwater flow and quality modelling,” E. Custodio, et al. (Eds.), NATO ASI Series C, Vol. 224, pp. 227-246, 1987.
93. LaBolle, E.M., Quastel, J., Fogg, G.E., Gravner, J., “Diffusion processes in composite porous media and their numerical integration by random walks: generalized stochastic differential equations with discontinuous coefficients,” Water Resources Research, Vol. 36, No. 3, pp. 651-662, 2000.
94. Hoteit, H., Mosé, R., Younes, A., Lehmann, F., Ackerer, P., “Three-dimensional modelling of mass transfer in porous media using the mixed hybrid finite elements and the random walk methods,” Mathematical Geology, Vol. 34, No. 4, pp. 435-456, 2002.
95. Frind, E.O., Muhammad, D.S., Molson, J.W., “Delineation of three-dimensional well capture zones for complex multi-aquifer systems,” Ground Water, Vol. 40, No. 6, pp. 586-598, 2002.
96. Huang, H., Hassan, A.E., Hu, B.X., “Monte Carlo study of conservative transport in heterogeneous dual porosity media,” Journal of Hydrology, Vol. 275, pp. 229-241, 2003.
97. Bäckblom, G. “Excavation Damage and Disturbance in Crystalline Rock–Results from Experiments and Analyses,” TR-08-08, Svensk Kärnbränslehantering AB, 2008.
98. Svensson, U., “A continuum representation of fracture networks. Part I: Method and basic test cases,” Journal of Hydrology, Vol. 250, pp. 170-186, 2001.
99. Svensson, U., “A continuum representation of fracture networks. Part II: Application to the Äspö Hard Rock laboratory,” Journal of Hydrology, Vol. 250, pp. 187-205, 2001.
100. Svensson, U., “DarcyTools, Version 3.4. Verification, validation and demonstration,” R-10-71, Svensk Kärnbränslehantering AB, 2010.
101. Svensson, U., Ferry, M., “DarcyTools, Version 3.4. User’s guide,” R-10-72, Svensk Kärnbränslehantering AB, 2010.
102. Svensson, U., Ferry, M., Kuylenstierna, H.O., “DarcyTools, Version 3.4 - Concepts, methods andequations,” R-07-38, Svensk Kärnbränslehantering AB, 2010.
103. Romero, L., Thompson, A., Moreno, L., Neretnieks, I., Widen, H., Boghammar, A., “COMP23/NUCTRAN User′s Guide,” R-99-64, Svensk Kärnbränslehantering AB, 1999.
104. Munier, R., “Full perimeter intersection criteria, Definitions and implementations in SR-Site,” TR-10-21, Svensk Kärnbränslehantering AB, 2010.
105. Yu, Y.-C., Shen, Y.-H., Lee, T.-P., Ni, C.-F., Lee, I.-H., “Numerical Assessments of Flow and Advective Transport Uncertainty for Performance Measures of Radioactive Waste Geological Disposal in Fractured Rocks,” Energies, Vol. 15(15), No. 5585, 2022.
106. Yu, Y.-C., Chen, C.-J., Chung, C.-C., Ni, C.-F., Lee, I.-H., Wu, Y.-C., Lin, T.-Y., “A Multimodel Framework for Quantifying Flow and Advective Transport Controlled by Earthquake-Induced Canister Failures in a Reference Case for Radioactive Waste Geological Disposa,” Energies, Vol. 16(13), No. 5081, 2023.
107. 常態分佈(高斯分佈),取自國立臺灣大學計算機及資訊網路中心網站:https://homepage.ntu.edu.tw/~clhsieh/biostatistic/4/4-1.htm
指導教授 倪春發(Chuen-Fa Ni) 審核日期 2024-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明