博碩士論文 111327007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:146 、訪客IP:3.145.41.102
姓名 陳鵬文(Peng-Wen Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 整合模糊控制與多感測器之智慧助步車
(An Intelligent Rollator by Integrating Fuzzy Control and Multi-Sensor System)
相關論文
★ 基於深度學習之人員追蹤辨識系統★ 應用電流特徵時頻分析與深度學習於馬達故障診斷
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-1以後開放)
摘要(中) 本論文研發出一種創新的行動輔助解決方案,期盼引領未來的行動輔助技術—¬智慧助步車,這款經過加裝改造的助步車為協助行動受限的年長者設計,使其能夠安全享受戶外活動。智慧助步車適合對象主要為年長者康復期患者,並具備一定的行走能力,但需要額外的支撐來預防跌倒,旨在提供更高效、更可靠的行動支持。智慧助步車首先利用光學雷達系統獲取操作者的位置資訊,光學雷達系統掃描並捕捉使用者左右腿的中心位置,從而能夠精確計算年長者在步伐交替運動時的數據,並經過平滑處理與線性擬合後,得出更為精準的行走趨勢數據,為後續的控制提供可靠的基礎。此外,系統還基於九軸感測器提供的數據進行分析,即時監控操作狀態並調整助步車的方向控制。九軸感測器能夠精確測量加速度、角速度和磁場強度,從而提供全面的動態信息,這些數據與光學雷達系統的數據相結合,使得系統能夠對使用者的行走狀態進行綜合分析,確保助步車能夠靈活應對各種行走情況。為實現兩側輪轂馬達的同步運行和精確控制,系統即時監控兩側輪轂馬達的霍爾訊號,並計算馬達轉速差。根據這些數據,設計兩種不同的模糊邏輯控制系統。第一個模糊邏輯系統基於使用者的平均間距和行走趨勢距離變化率進行模糊推理,生成初步控制信號。第二個階層式模糊邏輯系統以第一個模糊邏輯系統的輸出為輸入,結合馬達轉速差數值進行進一步推論,從而實現對兩個輪轂馬達的精確控制。這兩種模糊控制系統的結合,確保智慧助步車能夠即時調整兩側馬達的速度,使助步車始終保持在一個近乎直線行走的穩定狀態,通過這種多傳感器融合與模糊控制理論的應用,智慧助步車能夠提供精確、可靠的行動支持,實現有效的行動輔助功能。
摘要(英) This thesis presents the development of an innovative mobility aid solution aimed at advancing future assistive technologies—the Intelligent Rollator. This modified rollator is designed to assist elderly individuals with mobility limitations, enabling them to safely enjoy outdoor activities. The primary target users are elderly patients in rehabilitation with sufficient walking ability who require additional support to prevent falls, providing them with more efficient and reliable mobility assistance.The Intelligent Rollator utilizes an optical radar system to acquire the user′s positional information. The system scans and captures the center position of the user′s legs, enabling precise calculation of walking data during gait alternation. This data is then smoothed and linearly fitted to provide accurate walking trend data, forming a reliable foundation for control mechanisms. Additionally, the system analyzes data from a nine-axis sensor, which provides real-time monitoring of operational status and adjusts the rollator’s directional control. The nine-axis sensor measures acceleration, angular velocity, and magnetic field strength, offering comprehensive dynamic information. By integrating data from the optical radar and the nine-axis sensor, the system performs a comprehensive analysis of the user′s walking status, ensuring the rollator can adapt flexibly to various conditions.To achieve synchronized operation and precise control of the dual hub motors, the system continuously monitors the Hall signals from both motors and calculates the speed differential. Based on this data, two fuzzy logic control systems are designed. The first system performs reasoning based on the user′s average distance and walking trend variation rate, generating initial control signals. The second hierarchical system takes the output of the first, combined with the motor speed differential, to perform further reasoning, achieving precise motor control. This combination ensures the Intelligent Rollator can adjust motor speeds in real-time, maintaining a nearly straight and stable walking state.By applying multi-sensor fusion and fuzzy control theory, the Intelligent Rollator provides precise and reliable mobility support.
關鍵字(中) ★ 智慧助步車
★ 光學雷達
★ 模糊控制系統
★ 移動控制
關鍵字(英) ★ Intelligent rollator
★ LiDAR
★ Fuzzy logic system
★ Mobility control
論文目次 摘要 ii
Abstract iii
誌謝 iv
目 錄 v
表目錄 viii
圖目錄 ix
1 第一章 緒論 1
1-1 研究背景 1
1-2 研究動機 1
1-3 文獻回顧 2
1-4 論文目標 7
1-5 論文架構 8
2 第二章 系統架構與軟體介紹 9
2-1 系統架構 9
2-2 硬體介紹 12
2-2-1 Arduino Mega2560 Rev3與擴充版 14
2-2-2 ESP32 WROOM 32 15
2-2-3 RPLiDAR A1M8 光學雷達 16
2-2-4 BNO055 九軸感測器 17
2-2-5 輪轂馬達與驅動器 18
2-2-6 電源與降壓模組 20
2-2-7 助步車與加工件 21
2-3 系統整合 22
3 第三章 行走數據分析優化與數學模型 23
3-1 行走數據收集 23
3-2 數據過濾與距離計算 25
3-3 中心點計算與動態調整 26
3-4 行走數據趨勢分析 27
3-5 曲線擬合與高斯分布 29
4 第四章 智慧助步車控制與技術 33
4-1 輪轂馬達控制 33
4-2 回授訊號同步控制輪轂馬達 34
4-3 轉彎控制 35
4-4 模糊邏輯系統(FLS) 37
4-4-1 階層式模糊邏輯系統(HFS) 37
4-4-2 串列式模糊邏輯系統(SHFS) 39
4-4-3 平行式模糊邏輯系統(PHFS) 40
4-4-4 雙輪模糊控制行走系統 40
4-4-5 左側輪轂馬達模糊控制器 44
4-4-6 右側輪轂馬達模糊控制器 46
5 第五章 實驗測試與結果討論 50
5-1 行走控制關鍵因素分析 50
5-2 間距數據預處理與分析 51
5-3 模糊控制系統性能指標評估 52
5-4 直線測試 54
5-5 轉彎測試 55
5-6 上坡測試 56
5-7 下坡測試 57
6 第六章 結論與未來展望 58
6-1 結果與討論 58
6-2 未來展望 58
7 參考文獻 59
參考文獻 [1] 國家發展委員會-人口推估查詢系統-中華民國人口推估. [Online]. Available: https://pop-proj.ndc.gov.tw/
[2] 台灣再2年就全面進入超高齡社會!長照是危機也是轉機. [Online]. Available: https://www.businesstoday.com.tw/article/category/183016/post/202309150020/
[3] 不運動關節退化更快!醫曝穩定膝關節最重要肌群及如何鍛鍊. [Online]. Available: https://health.udn.com/health/story/5967/7006845
[4] M. S. Aslam, M. I. Aziz, K. Naveed, and U. K. uz Zaman, “An RPLiDAR Based SLAM Equipped with IMU for Autonomous Navigation of Wheeled Mobile Robot,” 2020 IEEE 23rd International Multitopic Conference (INMIC), Bahawalpur, Pakistan, 2020, pp. 1–5, doi: 10.1109/INMIC50486.2020.9318133.
[5] B. Sergey, “Ultrasonic Navigation to Control The Movement of a Mobile Robot,” 2020 Moscow Workshop on Electronic and Networking Technologies (MWENT), Moscow, Russia, 2020, pp. 1–4, doi: 10.1109/MWENT47943.2020.9067482.
[6] V. Sharma, S. Sangwan, and K. S. Bora, “Design, Development and Control of a Planetary Rover Using ROS,” 2021 Second International Conference on Electronics and Sustainable Communication Systems (ICESC), Coimbatore, India, 2021, pp. 69–76, doi: 10.1109/ICESC51422.2021.9532782.
[7] G. Verdezoto, J. Ballesteros, and C. Urdiales, “Smart Rollators Aid Devices: Current Trends and Challenges,” IEEE Transactions on Human-Machine Systems, vol. 52, no. 6, pp. 1103–1110, Dec. 2022, doi: 10.1109/THMS.2022.3202558.
[8] R. B. A. Gunawan, R. Akbar, and A. Wijayanto, “Rollator with Random Forest Implementation for Footstep Prediction Using IMU Sensor,” 2022 International Electronics Symposium (IES), Surabaya, Indonesia, 2022, pp. 448–454, doi: 10.1109/IES55876.2022.9888668.
[9] A. Yeaser, J. Tung, J. Huissoon, and E. Hashemi, “Learning-Aided User Intent Estimation for Smart Rollators,” 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 2020, pp. 3178–3183, doi: 10.1109/EMBC44109.2020.9175610.
[10] X. Wan and Y. Yamada, “An Acceleration-Based Nonlinear Time-Series Analysis of Effects of Robotic Walkers on Gait Dynamics During Assisted Walking,” IEEE Sensors Journal, vol. 22, no. 21, pp. 21188–21196, 1 Nov.1, 2022, doi: 10.1109/ JSEN.2022.3206545.
[11] M. Schwarz, V. Gauda, M. Kaiser, H. K. J. Kuttruff, J. Rentzsch, and M. Thür, “Networked Multi-Sensor Rollator with AI-assisted Fall Detection,” 2023 IEEE 36th International Symposium on Computer-Based Medical Systems (CBMS), L′Aquila, Italy, 2023, pp. 787–790, doi: 10.1109/CBMS58004.2023.00320.
[12] F. Grzeskowiak, L. Devigne, F. Pasteau, G. S. V. Dutra, M. Babel, and S. Guégan, “SWALKIT: A Generic Augmented Walker Kit to Provide Haptic Feedback Navigation Assistance to People with Both Visual and Motor Impairments,” 2022 International Conference on Rehabilitation Robotics (ICORR), Rotterdam, Netherlands, 2022, pp. 1–6, doi: 10.1109/ICORR55369.2022.9896406.
[13] H. Thanh Le, S. L. Phung, and A. Bouzerdoum, “Bayesian Gabor Network with Uncertainty Estimation for Pedestrian Lane Detection in Assistive Navigation,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 32, no. 8, pp. 5331–5345, Aug. 2022, doi: 10.1109/TCSVT.2022.3144184.
[14] A. Beaulieu and M. Doumit, “Review and Analysis of Frontal Plane Stability Assistance for Elderly Individuals,” 2023 IEEE Biomedical Circuits and Systems Conference (BioCAS), Toronto, ON, Canada, 2023, pp. 1–5, doi: 10.1109/BioCAS58349.2023. 10388754.
[15] A. Mahdi, J. F. -S. Lin, and K. Mombaur, “Maintaining Mobility in Older Age - Design and Initial Evaluation of The Robot SkyWalker for Walking & Sit-to-Stand Assistance,” 2022 9th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (BioRob), Seoul, Korea, Republic of, 2022, pp. 01–08, doi: 10.1109/ BioRob52689.2022.9925362.
[16] D. Chen, X. Zhou, J. Li, J. He, X. Yu, L. Zhang, and W, Qi, “A Muscle Teleoperation System of a Robotic Rollator Based on Bilateral Shared Control,” IEEE Access, vol. 8, pp. 151160–151170, 2020, doi: 10.1109/ ACCESS.2020.3016841.
[17] J. Nie, M. Jiang, A. Botta, Y. Sugahara, and Y. Takeda, “Adaptive Ground Clearance Control for Preparation for Fall in a Wearable Assistive Device,” 2024 IEEE 18th International Conference on Advanced Motion Control (AMC), Kyoto, Japan, 2024, pp. 1–5, doi: 10.1109/AMC58169.2024.10505443.
[18] X. Li, L. Zhou, and Y. Li, “A Multi-model Human Motion Tracking Approach with Wearable IMU Sensors,” 2020 IEEE International Conference on Mechatronics and Automation (ICMA), pp. 1871–1876, 2020.
[19] T. Zhao, H. Cao, and S. Dian, “A Self-Organized Method for a Hierarchical Fuzzy Logic System Based on a Fuzzy Autoencoder,” IEEE Transactions on Fuzzy Systems, vol. 30, no. 12, pp. 5104–5115, Dec. 2022, doi: 10.1109/TFUZZ.2022.3165690.
[20] D. D. Nauck, “Measuring Interpretability in Rule-Based Classification Systems,” The 12th IEEE International Conference on Fuzzy Systems, 2003. FUZZ ′03., St. Louis, MO, USA, 2003, pp. 196–201 vol.1, doi: 10.1109/FUZZ.2003.1209361.
[21] T. R. Razak, J. M. Garibaldi, C. Wagner, A. Pourabdollah, and D. Soria,“Toward a Framework for Capturing Interpretability of Hierarchical Fuzzy Systems—A Participatory Design Approach,” IEEE Transactions on Fuzzy Systems, vol. 29, no. 5, pp. 1160–1172, May 2021
[22] L. Magdalena, “Semantic Interpretability in Hierarchical Fuzzy Systems: Creating Semantically Decouplable Hierarchies,” Information Sciences, vol. 496, pp. 109–123, 2019.
[23] T. R. Razak, J. M. Garibaldi, C. Wagner, A. Pourabdollah, and D. Soria, “Interpretability Indices for Hierarchical Fuzzy Systems,” 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Naples, Italy, 2017, pp. 1–6, doi: 10.1109/FUZZ-IEEE.2017. 8015616.
[24] T. R. Razak, N. H. Kamis, N. H. Anuar, J. M. Garibaldi, and C. Wagner, “Decomposing Conventional Fuzzy Logic Systems to Hierarchical Fuzzy Systems,” 2023 IEEE International Conference on Fuzzy Systems (FUZZ), Incheon, Korea, Republic of, 2023, pp. 1–7, doi: 10.1109/FUZZ52849.2023.10309727.
[25] C. Sun and H. Li, “Construction of Universal Approximators for Multi-Input Single-Output Hierarchical Fuzzy Systems,” IEEE Transactions on Fuzzy Systems, vol. 31, no. 12, pp. 4170–4179, Dec. 2023, doi: 10.1109/TFUZZ.2023.3276577
[26] T. R. Razak, C. Chen, J. M. Garibaldi, and C. Wagner, “Designing The Hierarchical Fuzzy Systems Via FuzzyR Toolbox,” 2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Luxembourg, Luxembourg, 2021, pp. 1–6, doi: 10.1109/ FUZZ45933. 2021.9494485.
[27] P. -W. Chen, Y. -R. Li, and H. -C. Chen, “An Intelligent Rollator for The Elderly,” 2024 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 2024, pp. 1–4, doi: 10.1109/ICCE59016.2024.10444186.
[28] Arduino Mega2560 Rev3. [Online]. Available: https://store-usa.arduino.cc/products/ arduino-mega-2560-rev3
[29] ESP32 WROOM 32. [Online]. Available:https://micro.rohm.com/tw/deviceplus/how-tos/arduino-guide/lets-play-with-esp-wroom-32-on-arduino-environment-construction-setup-led-blinking/
[30] RPLiDAR-A1 360° Laser Range Scanner. [Online]. Available: https://www. slamtec. com/en /Lidar/A1
[31] BNO055 9-Axis Sensing Module. [Online]. Available: https://www.icshop.com.tw /products/368031000977
[32] Tinkercad | Create 3D digital designs with online CAD. [Online].Available: https://www.tinkercad.com/dashboard
[33] Unify design, engineering, electronics, and manufacturing with Fusion 36. [Online]. Available: https://www.autodesk.com/products/fusion-360/overview?term=1-YEAR& tab=subscription
[34] O. Astrachan, “Bubble Sort: An Archaeological Algorithmic Analysis,” ACM Sigcse Bulletin 35.1, pp. 1–5, 2003.
[35] Least Squares Method. [Online]. Available: https://zh.wikipedia.org/zh-tw/%E6% 9C%80%E5%B0%8F%E4%BA%8C%E4%B9%98%E6%B3%95
[36] K. Passino and S. Yurkovich, “Fuzzy Control”. Reading, MA, USA: Addison-Wesley, 1998.
[37] SDGs 懶人包》什麼是永續發展目標 SDGs?17項目標一次掌握[Online]. Available: https://futurecity.cw.com.tw/article/1867
[38] SLAMTEC RoboStudio. [Online]. Available: https://www.slamtec.com/en/RoboStudio
指導教授 陳翔傑(Hsiang-Chieh Chen) 審核日期 2024-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明