博碩士論文 111323061 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:147 、訪客IP:3.144.6.66
姓名 趙詠綺(Yong-Qi Zhao)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 探索五軸CNC微銑削技術在製造三維微流控模具中的優勢和挑戰
(Exploring the Advantages and Challenges of Five-Axis CNC Micro-Milling Technology in the Fabrication of Three-Dimensional Microfluidic Molds)
相關論文
★ 微流體系統應用於機械力刺激人體膀胱癌細胞之研究★ 多重微流體晶片機械應力刺激細胞培養之研究
★ 藉由熱接合、表面改質與溶劑處理方法 封閉於環狀嵌段共聚物與環烯烴共聚物材料上 微流道之研究★ Development of A Label-Free Imaging Droplet Sorting System with Machine Learning-Support Vector Machine (SVM)
★ 複合式物理力的生物反應器自動化與控制設計★ 外部致動之微流體機電控制平台
★ 以微铣削進行高分子微流體裝置之製程整合★ 奈米矽質譜晶片於質譜檢測之應用研究
★ 矽奈米結構對於質譜離子化效率探討之研究★ 微滾軋製程應用於高分子材料轉印微結構之研究
★ 設計微流體晶片應用於人體胎盤幹細胞的物理/化學誘導分化之研究★ 利用熱壓製造類多孔隙介質之 微流道模型研究
★ 單晶矽材料電化學放電鑽孔及同軸電度之研究★ 微流道中液滴成形及滴落現象之模擬分析
★ 兆聲波輔助化學溶液清潔晶圓表面汙染顆粒研究★ 真空加熱矽奈米結構晶片對於提升質譜檢測靈敏度與離子化機制探討與應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-8-2以後開放)
摘要(中) 隨著微流體領域中對於複雜三維微結構需求的增加,製造微流體裝置的三維結構的方法變得越來越重要。本研究探討了五軸電腦數控銑床(工作臺傾斜型)技術在製造具有三維微結構的金屬微模具方面的可行性,並使用銅作為模具材料,應用於聚合物PDMS複製以製造三維微結構。研究過程中重點探討了五軸CNC在多軸微加工中的優勢與挑戰。由於在五軸CNC(工作臺傾斜型)上加工平面板材時受限於刀具尺寸和刀具夾頭干涉所產生的加工限制,本研究提出了一種評估五軸加工允許旋轉角度範圍的方法,以有效快速評估及利用五軸CNC A軸的實際應用旋轉角度範圍,以提高製造效率。本研究在五軸CNC微銑削技術中,通過優化加工參數和使用加長型的深溝型立銑刀,製造出高達AR 20的高深寬比矩形微流道;在同一道工序中製造出具有傾斜角60°和75°且AR 0.5至10不等的高深寬比斜槽微結構。此外,透過五軸CNC微銑削技術結合球型微銑刀,製造出表面精度達到0.0609至0.1093µm的金屬三維曲面微模具,並用於PDMS聚合物複製銑。展示了五軸CNC微銑削技術在聚合物微流體領域中的應用潛力。
摘要(英) With the increasing demand for complex three-dimensional microstructures in the microfluidic field, the methods for fabricating three-dimensional structures in microfluidic devices have become increasingly important. This study investigates the feasibility of using five-axis computer numerical control (CNC) milling (table-tilting type) technology to manufacture metal micro molds with three-dimensional microstructures, using copper as the mold material, and applying it to polymer PDMS replication to create three-dimensional microstructures. The research focuses on the advantages and challenges of five-axis CNC in multi-axis micro machining. Due to the limitations imposed by tool size and tool holder interference when machining planar substrates on a five-axis CNC (table-tilting type), this study proposes a method for evaluating the allowable rotation angle range for five-axis machining. This method enables effective and rapid assessment and utilization of the practical application rotation angle range of the five-axis CNC A-axis, thereby improving manufacturing efficiency.
By optimizing machining parameters and using extended deep-groove end mills, this study achieved high aspect ratio (AR) microstructures up to AR 20 in three-axis micro milling. In five-axis micro milling, the same process produced high aspect ratio slanted groove microstructures with tilt angles of 60° and 75° and ARs ranging from 0.5 to 10. Additionally, using ball end mills with five-axis CNC micro milling technology, metal three-dimensional curved surface micro molds with surface precision ranging from 0.0609 to 0.1093 µm were fabricated and used for PDMS polymer replication. This demonstrates the application potential of five-axis CNC micro milling technology in the polymer microfluidic field.
關鍵字(中) ★ 五軸CNC多軸加工
★ 微銑削技術
★ 三維高深寬比微結構
★ 三維曲面微結構
★ 金屬微模具
★ 聚合物PDMS複製
關鍵字(英) ★ Five-axis CNC multi-axis machining
★ micro milling technology
★ 3D high aspect ratio microstructures
★ 3D curved surface microstructures
★ metal micro molds
★ polymer PDMS replication
論文目次 摘要 III
ABSTRACT IV
誌謝 V
圖目錄 VII
第一章 緒論 1
1.1 前言 1
1.2 金屬微加工技術 2
1.2.1 積層製造 2
1.2.2 雷射加工 5
1.2.3 CNC微銑削 6
1.3 三軸/五軸CNC微銑削技術 8
五軸CNC微銑削技術在微流體領域的應用 10
1.4 研究動機 12
第二章 實驗材料設備與方法 13
2.1 實驗材料與設備 13
2.2 實驗研究流程 15
2.3 高深寬比微流道製程 16
2.4 三維微結構製程 17
2.5 PDMS-玻璃基板接合製程 18
第三章 結果與討論 19
3.1 五軸CNC微銑削技術的機台精度與穩定性評估 19
3.2 刀具形狀與加工性能 20
3.3 主軸夾頭與刀具長度對旋轉加工範圍的影響 22
3.4 工件外型對旋轉加工範圍的影響 29
3.5 五軸CNC的夾具型式對於微加工之影響 34
3.6 五軸CNC微銑削技術製造三維微結構實例結果分析 37
3.6.1 高深寬比之三維微結構製程參數設計 37
3.6.2 高深寬比微結構之前導實驗結果 39
3.6.3 高深寬比的三維矩形微結構 40
3.6.4 高深寬比的斜槽微結構之金屬微模具 43
3.6.5 自由曲面微結構的金屬微模具製造 46
3.6.6 三維微結構金屬微模具在微流體技術中的應用潛力 50
第四章 結論與未來展望 51
參考文獻 52
附錄: 57
參考文獻 1. Whitesides, G.M., The origins and the future of microfluidics. Nature, 2006. 442(7101): p. 368-73.
2. Manz, A., N. Graber, and H.M. Widmer, Miniaturized total chemical analysis systems: A novel concept for chemical sensing. Sensors and Actuators B: Chemical, 1990. 1(1): p. 244-248.
3. Juang, Y.J. and Y.J. Chiu, Fabrication of Polymer Microfluidics: An Overview. Polymers (Basel), 2022. 14(10).
4. Akceoglu, G.A., Y. Saylan, and F. Inci, A Snapshot of Microfluidics in Point‐of‐Care Diagnostics: Multifaceted Integrity with Materials and Sensors. Advanced Materials Technologies, 2021. 6(7).
5. Fallahi, H., et al., Flexible Microfluidics: Fundamentals, Recent Developments, and Applications. Micromachines (Basel), 2019. 10(12).
6. Cardoso, B.D., et al., Recent Advances on Cell Culture Platforms for In Vitro Drug Screening and Cell Therapies: From Conventional to Microfluidic Strategies. Adv Healthc Mater, 2023. 12(18): p. e2202936.
7. Liu, Y., et al., Recent progress in microfluidic biosensors with different driving forces. TrAC Trends in Analytical Chemistry, 2023. 158: p. 116894.
8. Giri, K. and C.W. Tsao, Recent Advances in Thermoplastic Microfluidic Bonding. Micromachines (Basel), 2022. 13(3).
9. Zohar, B., et al., A micro-channel array in a tissue engineered vessel graft guides vascular morphogenesis for anastomosis with self-assembled vascular networks. Acta Biomater, 2023. 163: p. 182-193.
10. Lopes, R., et al. Low cost microfluidic device for partial cell separation: Micromilling approach. in 2015 IEEE International Conference on Industrial Technology (ICIT). 2015.
11. Suriano, R., et al., Femtosecond laser ablation of polymeric substrates for the fabrication of microfluidic channels. Applied Surface Science, 2011. 257(14): p. 6243-6250.
12. Kim, P., et al., Soft lithography for microfluidics: a review. BIOCHIP JOURNAL, 2008. 2(1): p. 1-11.
13. Kang, K., et al., Fabrication of truly 3D microfluidic channel using 3D-printed soluble mold. Biomicrofluidics, 2018. 12(1): p. 014105.
14. Jung, W.C., et al., Micro machining of injection Mold inserts for fluidic channel of polymeric biochips. SENSORS, 2007. 7(8): p. 1643-1654.
15. Studer, V., A. Pépin, and Y. Chen, Nanoembossing of thermoplastic polymers for microfluidic applications. Applied Physics Letters, 2002. 80(19): p. 3614-3616.
16. Heckele, M. and W.K. Schomburg, Review on micro molding of thermoplastic polymers. Journal of Micromechanics and Microengineering, 2004. 14(3): p. R1-R14.
17. Kim, K., et al., Rapid replication of polymeric and metallic high aspect ratio microstructures using PDMS and LIGA technology. Microsystem Technologies, 2002. 9(1-2): p. 5-10.
18. Bissacco, G., H.N. Hansen, and L. De Chiffre, Micromilling of hardened tool steel for mould making applications. Journal of Materials Processing Technology, 2005. 167(2-3): p. 201-207.
19. Shiu, P.-P., G.K. Knopf, and M. Ostojic, Fabrication of metallic micromolds by laser and electro-discharge micromachining. Microsystem Technologies, 2009. 16(3): p. 477-485.
20. Su, R., F. Wang, and M.C. McAlpine, 3D printed microfluidics: advances in strategies, integration, and applications. Lab Chip, 2023. 23(5): p. 1279-1299.
21. Zhang, N., et al., 3D Printing of Metallic Microstructured Mould Using Selective Laser Melting for Injection Moulding of Plastic Microfluidic Devices. Micromachines (Basel), 2019. 10(9).
22. Sommer, D., et al., Design Rules for Hybrid Additive Manufacturing Combining Selective Laser Melting and Micromilling. Materials (Basel), 2021. 14(19).
23. Farahani, R.D., M. Dube, and D. Therriault, Three-Dimensional Printing of Multifunctional Nanocomposites: Manufacturing Techniques and Applications. Adv Mater, 2016. 28(28): p. 5794-821.
24. Parthiban, P., et al., Evaluation of 3D-printed molds for fabrication of non-planar microchannels. Biomicrofluidics, 2021. 15(2): p. 024111.
25. Duda, T. and L.V. Raghavan, 3D Metal Printing Technology. IFAC-PapersOnLine, 2016. 49(29): p. 103-110.
26. Vollertsen, F., et al., Chances and Limitations in the Application of Laser Chemical Machining for the Manufacture of Micro Forming Dies. MATEC Web of Conferences, 2018. 190.
27. Allen, M.C., S. Lookmire, and E. Avci, Manufacturing Microfluidic Chips: Micro Milling Approach, in 2022 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS). 2022. p. 1-6.
28. Madureira, M., et al., Red Blood Cells Separation in a Curved T-Shaped Microchannel Fabricated by a Micromilling Technique, in VipIMAGE 2019. 2019. p. 585-593.
29. Chen, P.C., et al., Micromachining Microchannels on Cyclic Olefin Copolymer (COC) Substrates with the Taguchi Method. Micromachines (Basel), 2017. 8(9).
30. Arcot, Y., G.L. Samuel, and L.X. Kong, Manufacturability and surface characterisation of polymeric microfluidic devices for biomedical applications. INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2022. 121(5-6): p. 3093-3110.
31. Ku, X., et al., Low-cost rapid prototyping of glass microfluidic devices using a micromilling technique. Microfluidics and Nanofluidics, 2018. 22(8).
32. Wang, J., et al., A novel method of manufacturing a microchannel with integrating three-dimensional microstructure arrays for mixing experiment. AIP Advances, 2021. 11(9).
33. Moxley-Paquette, V., et al., 5-Axis CNC Micromilling for Rapid, Cheap, and Background-Free NMR Microcoils. Anal Chem, 2020. 92(23): p. 15454-15462.
34. Böhme, A., et al., Fabrication and Validation by Micromilling for Bioreactor Prototyping. Materials Science Forum, 2018. 941: p. 2448-2453.
35. Yu, J.Z., et al., Biomimetic scaffolds with three-dimensional undulated microtopographies. Biomaterials, 2017. 128: p. 109-120.
36. Hernández-Ortiz, J.A., et al., Computer Numerical Control Micromilling of a Microfluidic Acrylic Device with a Staggered Restriction for Magnetic Nanoparticle-based Immunoassays. JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2022(184).
37. Sanz, O., et al., Intensification of hydrogen production by methanol steam reforming. International Journal of Hydrogen Energy, 2016. 41(10): p. 5250-5259.
38. Milan, N., et al., Innovative fabrication of diffractive surfaces on plastic parts via textures micromilled on NiP injection moulds. The International Journal of Advanced Manufacturing Technology, 2021. 113(5-6): p. 1347-1359.
39. Masato, D., et al., Impact of deep cores surface topography generated by micro milling on the demolding force in micro injection molding. Journal of Materials Processing Technology, 2017. 246: p. 211-223.
40. Deng, D., L. Zeng, and W. Sun, A review on flow boiling enhancement and fabrication of enhanced microchannels of microchannel heat sinks. International Journal of Heat and Mass Transfer, 2021. 175.
41. Li, K.-M. and S.-Y. Chou, Effect of Minimum Quantity Lubrication on Tool Wear and Surface Roughness in Micro-Milling. 2009. p. 393-399.
42. O′Toole, L., C.W. Kang, and F.Z. Fang, Precision micro-milling process: state of the art. Adv Manuf, 2021. 9(2): p. 173-205.
43. Koklu, U. and G. Basmaci, Evaluation of Tool Path Strategy and Cooling Condition Effects on the Cutting Force and Surface Quality in Micromilling Operations. Metals, 2017. 7(10).
44. Geng, Y.Q., et al., Effect of the inclined angle of micromilling tool on the fabrication of the microfluidic channel. INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2023. 125(7-8): p. 3069-3079.
45. Tamez-Tamez, J.I., et al., Assessment of geometrical dimensions and puncture feasibility of microneedles manufactured by micromilling. The International Journal of Advanced Manufacturing Technology, 2023. 126(11-12): p. 4983-4996.
46. Filiz, S., et al., Micromilling of microbarbs for medical implants. International Journal of Machine Tools and Manufacture, 2008. 48(3-4): p. 459-472.
47. Xiang, S., et al., Multi-machine tools volumetric error generalized modeling and Ethernet-based compensation technique. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2015. 230(5): p. 870-882.
48. Suh, S.H., J.J. Lee, and S.K. Kim, Multiaxis machining with additional-axis NC system: Theory and development. The International Journal of Advanced Manufacturing Technology, 1998. 14(12): p. 865-875.
49. Bohez, E.L.J., Five-axis milling machine tool kinematic chain design and analysis. International Journal of Machine Tools and Manufacture, 2002. 42(4): p. 505-520.
50. Bang, Y.-b., K.-m. Lee, and S. Oh, 5-axis micro milling machine for machining micro parts. The International Journal of Advanced Manufacturing Technology, 2004. 25(9-10): p. 888-894.
51. Takeuchi, Y., H. Yonekura, and K. Sawada, Creation of 3-D tiny statue by 5-axis control ultraprecision machining. Computer-Aided Design, 2003. 35(4): p. 403-409.
52. Nakamoto, K., et al., Fabrication of microinducer by 5-axis control ultraprecision micromilling. CIRP Annals, 2011. 60(1): p. 407-410.
53. Modarelli, M., D. Kot-Thompson, and K. Hoshino, 5-axis CNC micro-milling machine for three-dimensional microfluidics. bioRxiv, 2024: p. 2024-06.
54. Chang, F.-Y., et al., Fabrication of Edge Rounded Polylactic Acid Biomedical Stents by the Multi-Axis Micro-Milling Process. Applied Sciences, 2020. 10(8).
55. LTD., S.H.I.C. Five-axis machining center. Available from: https://www.hartford.com.tw/tw.
56. Moges, T.M., K.A. Desai, and P.V.M. Rao, Modeling of cutting force, tool deflection, and surface error in micro-milling operation. INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2018. 98(9-12): p. 2865-2881.
57. Chen, N., et al., Advances in micro milling: From tool fabrication to process outcomes. International Journal of Machine Tools and Manufacture, 2021. 160.
58. Alhadeff, L.L., et al., Protocol for tool wear measurement in micro-milling. Wear, 2019. 420-421: p. 54-67.
59. Präzisionswerkzeuge., A.G.; Available from: https://www.albrecht-germany.com/aktuell/.
60. Conditions, S.T.G.T.a.; Available from: https://www.secotools.com/article/84590?q=BT40TFADB-HCS06-150.
61. ANN WAY MACHINE TOOLS CO., L.; Available from: https://www.annwaytools.com/webls-zh-tw/ADS-High-Speed-Collet-Chuck-63.html.
62. Ltd., D.P.T.C.; Available from: https://www.endmill.com.tw/.
63. Company, M.-C.S.; Available from: https://www.mcmaster.com/products/end-mills/end-mills-1~/carbide-square-end-mills-9/system-of-measurement~metric/.
64. Conditions, S.T.G.T.a. Catalog Solid End Mills. Available from: https://www.secotools.com/article/84584?q=JME542002G1S.0Z2-SIRA&language=zh.
65. Guckenberger, D.J., et al., Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices. Lab Chip, 2015. 15(11): p. 2364-78.
66. Kadam, S.P. and S. Mitra, Electrochemical deburring - A comprehensive review. Materials Today: Proceedings, 2021. 46: p. 141-148.
67. Kumar, A.S., S. Deb, and S. Paul, Ultrasonic-assisted abrasive micro-deburring of micromachined metallic alloys. Journal of Manufacturing Processes, 2021. 66: p. 595-607.
68. Balázs, B.Z., et al., A review on micro-milling: recent advances and future trends. The International Journal of Advanced Manufacturing Technology, 2020. 112(3-4): p. 655-684.
69. Saha, S., et al., An investigation on the top burr formation during Minimum Quantity Lubrication (MQL) assisted micromilling of copper. Materials Today: Proceedings, 2020. 26: p. 1809-1814.
70. 楊勝光, Research on the fabrication of metal microchannels and microstructures using micro-milling process. 2023. p. 28.
71. Nghiep, T.N., A.A.D. Sarhan, and H. Aoyama, Analysis of tool deflection errors in precision CNC end milling of aerospace Aluminum 6061-T6 alloy. Measurement, 2018. 125: p. 476-495.
72. Hashimoto, S., S. Uehara, and N. Moriizumi, Movement of Cell Flowing Over Oblique Microgroove. Journal of Systemics, Cybernetics and Informatics, 2023. 21(1): p. 73-79.
73. Rahim, S.A., et al. Design and development of oblique groove micromixer for laminar blood reagent mixing. in 2013 IEEE International Conference on Control System, Computing and Engineering. 2013.
74. Chen, L., et al., Flow Boiling of Low-Pressure Water in Microchannels of Large Aspect Ratio. Energies, 2020. 13(11).
75. Connon, C.J. and R.M. Gouveia, Milliscale Substrate Curvature Promotes Myoblast Self-Organization and Differentiation. Adv Biol (Weinh), 2021. 5(4): p. e2000280.
76. Werner, M., et al., Surface Curvature Differentially Regulates Stem Cell Migration and Differentiation via Altered Attachment Morphology and Nuclear Deformation. Adv Sci (Weinh), 2017. 4(2): p. 1600347.
指導教授 曹嘉文 審核日期 2024-8-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明