博碩士論文 111323024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:100 、訪客IP:18.226.94.64
姓名 邱琬婷(Wan-Ting Qiu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 大齒數比螺旋傘齒輪齒面接觸分析之數學模型建立
(Mathematical Modelling of Tooth Contact Analysis for High Gear-Ratio Spiral Bevel Gear Pairs)
相關論文
★ 應用調諧顆粒阻尼器於迴轉式壓縮機振動抑制之研究★ 應用離散元素法與多體動力學於齒輪傳動系統動力分析模型之建立
★ 不同氣體負載下雙螺桿壓縮機動力響應及振動頻譜特徵之預測★ 新型魯氏真空泵轉子齒形之參數化設計及性能評估
★ 以CNC內珩齒機進行螺旋齒輪齒面拓樸修整之研究★ 雙螺桿壓縮機變導程轉子齒間法向間隙之數值計算方法及其三維幾何模型驗證
★ 不同工作條件下冷媒雙螺桿壓縮機之轉子受力分析及動載響應預測★ 應用多體動力學及離散元素法於具阻尼顆粒齒輪及軸承系統抑振之研究
★ 具齒廓修形內嚙合非圓形齒輪創成之方法建立與其傳動誤差分析★ 雙螺桿壓縮機於CFD仿真模擬之三維幾何簡化方法建立
★ 航空發動機齒輪箱傳動系統之強度分析與改善★ 電動車差速齒輪傳動系統之動載分析與性能評估
★ 電動車齒輪箱之剛-柔耦合動力學模型建立及等效輻射聲功率分析★ 指狀銑刀安裝偏差對真空泵螺桿轉子加工精度影響之研究
★ 以CNC內珩齒機加工具鼓形之錐狀齒輪之研究★ 應用阻尼顆粒於旋轉機械之振動抑制及動平衡設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-8-30以後開放)
摘要(中) 傘齒輪是一種用於傳遞旋轉運動和扭力的機械零件,因齒輪的齒面是斜面的可允許非平行軸之間的動力傳輸,並可承受高負載運轉時接觸上比起其他齒輪更平滑,故傳動性能高及噪音低。而傘齒輪中之螺旋傘齒輪由於特殊的形狀與其嚙合方式在製造上容易產生誤差,而大齒數比之螺旋傘齒輪又因其構造,即使誤差極小也會產生嚴重後果,會導致齒輪在傳動時會因接觸狀態不良導致傳動效率降低;而通常發現齒面接觸不良時會針對齒面進行修形加工,而在修形前須了解目前齒面接觸狀態再決定修形方式及量值,故求得接觸不良之狀態在進行修形時是重要之一環。本研究利用逆向工程方式將螺旋傘齒輪齒面之點資料進行處理並透過曲面擬合方式建構出齒面之數學模型;再將齒輪裝配至運動位置後利用最小轉角法搭配自身設計之干涉檢查模型,確定齒面間正確嚙合點之轉角,進而得出齒輪組之接觸線及傳動誤差;再將嚙合轉角代入到齒輪組運動位置即可利用變形四元樹法及常用之紅丹顆粒大小6 求得齒印範圍,建立出齒面接觸數學模型;最後透過模擬軟體KISSsoft利用其拓樸功能建立出真實齒面近似模型並且作接觸分析;針對齒面接觸數學模型及KISSsoft之接觸分析結果相互探討螺旋傘齒輪組齒面接觸之性能狀態,並針對齒面作修形且提高齒面接觸性能。
摘要(英) Spiral bevel gears are mechanical components used for transmitting rotational motion and torque. Due to the inclined tooth surfaces of these gears, they allow for power transmission between non-parallel axes, and they can withstand high loads while providing smoother contact compared to other gears. Therefore, they exhibit high transmission performance and low noise levels. However, spiral bevel gears, especially spiral bevel gears with a large tooth-to-tooth ratio, are prone to manufacturing errors due to their unique shape and meshing method. Even minor errors in manufacturing can have serious consequences, leading to decreased transmission efficiency due to poor contact conditions during operation. Typically, when poor tooth surface contact is detected, corrective shaping processes are applied to the tooth surface. However, it is crucial to understand the current tooth surface contact state before determining the method and amount of shaping. This study utilizes reverse engineering methods to process point data of spiral bevel gear tooth surfaces and construct mathematical models of the tooth surfaces through surface fitting techniques. After assembling the gears into their operational positions, the correct meshing angles between tooth surfaces are determined using the minimal rotation angle method combined with a self-designed interference checking model. This process allows for the determination of contact lines and transmission errors of the gear assembly. By incorporating the meshing angles into the gear assembly′s motion positions, the range of tooth imprints is calculated using deformation quaternion methods and commonly used red dan particle sizes. This establishes mathematical models of tooth surface contact. Finally, simulation software KISSsoft is employed to establish approximate models of real tooth surfaces and conduct contact analyses. The performance state of the spiral bevel gear assembly′s tooth surface contact is discussed based on the mathematical models of tooth surface contact and the results of KISSsoft′s contact analysis. Furthermore, corrective shaping processes are proposed to improve the tooth surface contact performance.
關鍵字(中) ★ 螺旋傘齒輪
★ 接觸分析
★ 最小轉角法
★ 變形四元樹法
關鍵字(英) ★ High gear-ratio spiral bevel gear pairs
★ Contact analysis
★ Minimal rotation angle method
★ Deformation quaternion methods
★ KISSsoft
論文目次 摘要 i
Abstract ii
謝誌 iv
目錄 v
圖目錄 vii
表目錄 xi
符號對照表 xii
第1章 緒論 1
1-1 前言 1
1-2 文獻回顧 3
1-3 研究動機與目的 5
1-4 論文架構 6
第2章 曲線及曲面擬合數學模型之建立 8
2-1 B-spline曲線及曲面模型建立 8
2-2 曲面及曲線擬合 14
2-2-1 螺旋傘齒輪曲線及曲面擬合方式 14
2-2-2 點資料參數化 17
2-2-3 曲線及曲面擬合數學模型 18
2-3 小結 19
第3章 傘齒輪對之齒面接觸數學模型建立 20
3-1 傘齒輪對裝配系統 20
3-2 最小轉角法齒面接觸點求解數學模型 23
3-2-1 齒面接觸轉角 25
3-2-2 搜索法 29
3-2-3 干涉檢查 30
3-3 傳動誤差 31
3-4 變形四元樹法接觸齒印求解數學模型 32
3-5 小結 35
第4章 KISSsoft傘齒輪接觸模型之建立 36
4-1 KISSsoft傘齒輪之模組 36
4-2 KISSsoft齒面等效模型之建立 37
4-3 不具齒面修形之大齒數比螺旋傘齒輪對 42
4-4 具齒面修形之大齒數比螺旋傘齒輪對 50
4-5 小結 54
第5章 實驗量測與數學模型對比 55
第6章 總結與未來展望 60
6-1 總結 60
6-2 未來展望 62
參考文獻 63
作者介紹 65
參考文獻 [1] 鄧效忠、魏冰陽,錐齒輪設計的新方法,科學出版社,北京,2012。
[2] 林禎祥,「以齒輪幾何量測點資料進行虛擬單齒腹檢測技術之研究」,國立中正大學,博士論文,2014。
[3] C. De Boor, “On Calculating with B-Splines,” Journal of Approximation Theory, Vol. 6, pp. 50-62, 1972.
[4] L. Piegl, “Modifying the Shape of Rational B-Splines Part1:Curve,” Computer Aided Design, Vo1. 21, No. 8, pp. 509-518, 1989.
[5] L. Piegl, “Modifying the Shape of Rational B-Splines.Part2:Surface” Computer Aided Design, Vo1. 21, No. 9, pp. 538-546 1989.
[6] D. F. Rogers and N. R. Fog, “Constrained B-Spline Curve and Surface Fitting” Computer Aided Design, Vo1. 21, No. 10, pp. 641-648, 1989.
[7] B. Sarker, and C-H. Menq, “Smooth Surface Approximation and Reverse Enginering,” Computer Aided Design, Vo1. 23, No. 9, pp. 623-628, 1991.
[8] L. Piegl and W. Tiller, The NURBS Book, Springer-Verlag, 1995.
[9] P. N. Chivate, and A. G. Jablokow, “Review of Surface Representations and Fitting for Reverse Engineering,” Computer Integrated Manufacturing Systems, Vo1. 8, No. 3, pp. 199-204, 1995.
[10] 邱顯智,「逆向工程–點資料前置處理與曲面重建」,國立中正大學,碩士論文,1996。
[11] 孫殿柱,真實齒面嚙合原理,科學出版社,2006。
[12] F. L. Litvin, “Theory of Gearing,” NASA Reference Publication, No.1212, 1989.
[13] 孫殿柱、董學朱,1994,「真實齒面對應點的求解算法」,中國農業大學學報,第31卷,第3期,70-73頁。
[14] 劉光磊、沈允文、王三民,2001,「弧齒錐齒輪齒面嚙合點的搜索策略研究」,機械科學與技術,第20卷,第2期,196-202頁。
[15] 劉誌偉,「任意齒面間的接觸分析」,國立中正大學,碩士論文,2005。
[16] 陳羿伶,「蝸輪蝸桿組齒輪接觸分析方法研究」,碩士論文,國立中正大學,2010。
[17] 龔煒程,「齒輪量測齒面間的接觸分析」,國立中正大學,碩士論文,2011。
[18] T. Varady, R. R. Martin, and J. Cox, “Reverse engineering of geometric models an introduction”, Computer-Aided Design, Vol. 29, No. 4, pp. 255-268, 1997.
[19] D. F Rogers, and N. G. Fog, “Constrained B-spline Curve and Surface Fitting” , Computer-Aided Design, Vol. 21, No. 10, pp. 87-96, 1989.
[20] 翁文德,2013,「探討逆向工程中B-Spline曲線嵌合之控制點數目最佳化技術」,東南科技大學學報,第38卷,第38期,71-82頁。
[21] I. J. Schoenberg, “SPLINE FUNCTIONS AND THE PROBLEM OF GRADUATION” Proceedings of the National Academy of Sciences, Vol. 52, No. 4, 1964.
[22] F. L. Litvin, Gear Geometry and Applied Theory, Cambridge University Press, 1994.
[23] W. L. Jannink, “Contact Surface Topology of Worm Gear Teeth, ” Gear Technology, pp. 31-47, 1988.
[24] I. Bae, and V. Schirru, “An approach of pairing bevel gears from conventional cutting machine with gears produced on 5-axis milling machine,” International Gear Conference 26th-28th, 240, Chandos, 2014.
[25] Kisssoft, Kisssoft Release 2020 User Manual, Kisssoft 2020.
指導教授 吳育仁(Yu-Ren Wu) 審核日期 2024-8-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明