博碩士論文 111323049 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:53 、訪客IP:3.135.207.204
姓名 陳靖涵(Ching-Han Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 雷射薄銅箔接合特性探討
(Characterizations of Laser Bonding in Thin Cop-per Foils)
相關論文
★ 超快雷射薄石英晶圓微鑽孔研究★ 新型光學式自動聚焦顯微鏡的設計與其性能分析
★ 以田口法作微型動壓軸承最佳化設計與性能評價★ 開發以 ANSYS-Fluent 為架構之數值模擬法探 討行星式 MOCVD 反應腔體內之三維氣體流場
★ 使用擴散片降低雷射幾何擾動方法之最佳化設計與實驗驗證★ 雷射直寫技術應用於金屬網格軟性透明電極製作
★ 多功能崁入式金屬網格透明電極技術開發★ 結合雷射直寫與無電鍍技術應用於嵌入式金屬網格透明電極製作
★ 雷射直寫自還原金屬複合墨水製作高抗氧化銅鎳合金網格透明電極★ 以雷射碳化靜電紡絲碳奈米纖維製作超級電容電極
★ 航太用鋁合金板熱處理爐設施之研究★ 雷射加工機應用於微米元件轉印製程之研究
★ 連續與脈衝式近紅外光雷射對無鹼玻璃之改質與雙面微透鏡陣列加工★ 使用濕式蝕刻後處理輔助之雷射藍寶石通孔研究
★ 鋰離子電池模組之產熱模型建立與熱傳模擬分析★ 脈衝雷射切割無定向矽鋼片及人工智能質量預測的實驗研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-1-1以後開放)
摘要(中) 隨著電子產品朝向小型化、輕薄化、多功能化和高密度化發展,作為元件間功能整合的電路板上所組裝的元件密度越來越高,導致高密度電路板的功耗和發熱量也隨之增加。如做為傳導電訊的金屬阻抗過大,將使電路板散熱不良,進而導致元件過熱,從而降低產品的效率、壽命與可靠性。為了解決這一問題,銅箔基板(Copper Clad Laminate, CCL)是印刷電路板(PCB)製造中的關鍵材料。CCL是由玻璃纖維和其他增強材料浸泡在樹脂中,並在其單面或雙面覆銅所製成,它廣泛應用於電視、廣播、電腦和行動通訊等電子產品中。隨著科技的進步,CCL在航空航天、通訊設備、消費性電子產品和LED照明等領域中的應用範圍也不斷擴大,它為各產業的電子產品提供強大的支持和基礎。
在使用CCL是重分佈層(Redistribution Layer, RDL)的PCB製程中,其銅箔層的封邊係依賴濕式蝕刻製程來保護和固定銅箔分離層。該法主要是在選定位置的周圍以光阻進行保護,經曝光顯影後,蝕刻去除上層約5 μm厚的銅箔和部分下層銅箔,然後將蝕刻後的表面封住,以保護分離層的高分子材料,避免在後續製程中產生分離。
本研究旨在研發一種使用紅外光雷射封合薄銅箔基板的雷射焊接法,檢視其取代前述濕式製程的可行性,以利於後續嵌入式電路基板(Embedded Trace Substrate, ETS)製程。研究主要對兩層厚度分別為5 μm和18 μm的銅箔進行疊焊,比較了使用波長為 1064 nm、最大功率20 W的脈衝式雷射 (Pulsed laser)與波長為1070 nm、最大功率500 W的連續式雷射(Continuous wave laser)的焊接效果。期望是能減小熱影響區且盡可能不傷及銅箔底下的有機材,並能在100 mm/s的焊接速度下形成穩定且均勻的焊道。
為了確保接合強度,我們以顯微鏡和焊接強度測試儀對樣品進行表徵檢測和接合強度測試。結果顯示,以脈衝式雷射焊接後剝離強度可達2.54 N/cm,連續式雷射剝離強度最高可達0.98 N/cm,此兩結果均高於高分子膠的剝離強度,也顯示以雷射直接進行薄銅箔焊接,在強度與時效應可滿足實際製程之需要。除了提供精確、高效的薄銅箔封合外,此法也相對環境更友善。
摘要(英) As electronic products continue to develop towards miniaturization, lightness, mul-ti-functionality, and high density, the density of components assembled on circuit boards for functional integration between devices is also increasing. This leads to higher power consumption and heat generation in high-density circuit boards. If the impedance of the metal used for conducting signals is too high, it will result in poor heat dissipation on the circuit board, causing the components to overheat, which in turn reduces the efficiency, lifespan, and reliability of the products. To address this issue, Copper Clad Laminate (CCL) has become a key material in the manufacturing of Printed Circuit Boards (PCBs). CCL is made by impregnating glass fibers and other reinforcing materials in resin and then coat-ing one or both sides with copper. It is widely used in electronic products such as televi-sions, broadcasting, computers, and mobile communications. With technological ad-vancements, the application scope of CCL has also expanded in fields like aerospace, communication equipment, consumer electronics, and LED lighting, providing strong support and foundation for electronic products in various industries.
In the PCB process that uses CCL as the Redistribution Layer (RDL), the edge sealing between the copper foil layers relies on a wet etching process to protect and fix the copper foils from separation in the subsequent processes. This method mainly involves protecting the selected area with a photoresist, and after exposure and development, the upper layer of approximately 5 μm thick copper foil and part of the lower copper foil are etched away. The etched surface is then sealed to protect the polymer material of the separation layer, preventing separation in subsequent processes.
This study aims to develop a laser welding method that uses infrared laser sealing on thin copper foil substrates, examining its feasibility as a replacement for the aforemen-tioned wet process to facilitate subsequent Embedded Trace Substrate (ETS) processing. The research focuses on welding two layers of copper foil with thicknesses of 5 μm and 18 μm, comparing the welding effects using a pulsed laser with a wavelength of 1064 nm and a maximum power of 20 W and a continuous wave laser with a wavelength of 1070 nm and a maximum power of 500 W. The goal is to minimize the heat-affected zone and avoid damaging the organic material beneath the copper foil while forming a stable and uniform weld at a welding speed of 100 mm/s.
To ensure bonding strength, samples were characterized and tested using a micro-scope and welding strength tester. The results show that the peel strength after pulsed laser welding can reach 2.54 N/cm, and the maximum peel strength with continuous wave laser welding can reach 0.98 N/cm. Both results are higher than the peel strength of polymer glue, demonstrating that direct laser welding of thin copper foil can meet the requirements of actual processes in terms of strength and durability. In addition to providing precise and efficient sealing of thin copper foil, this method is also relatively more environmentally friendly.
關鍵字(中) ★ 雷射焊接
★ 銅-銅接合
★ 銅箔基板(CCL)
★ 嵌入式電路基板(ETS)製程
★ PCB電路板
★ 脈衝雷射
★ 連續式雷射
★ 剝離測試
關鍵字(英) ★ Laser welding
★ Copper-copper bonding
★ Copper Clad Laminate (CCL)
★ Embedded Trace Substrate (ETS) process
★ PCB circuit boards
★ Pulsed laser
★ Continuous wave laser
★ Peel test
論文目次 致謝 vi
目錄 vii
圖目錄 x
表目錄 xiii
一、 緒論 1
1-1 背景 1
1-2 研究動機與目的 2
1-3 論文架構 3
二、 研究內容與方法 4
2-1 金屬焊接與其相關原理 4
2-1-1 金屬焊接 4
2-1-2 雷射焊接 7
2-1-3 銅的雷射焊接 9
2-2 紅外光雷射焊接 11
2-2-1 連續式雷射 12
2-2-2 脈衝式雷射 14
2-3 試片的厚度與雷射型態的選擇 16
2-4 PCB 18
2-4-1 PCB發展史簡介 18
2-4-2 基板分類 19
2-4-3 嵌入式跡線基板(ETS)製程 20
2-4-4 銅箔基板(Copper Clad Laminate) 21
2-5 傳承與創新 23
三、 實驗步驟與方法 24
3-1 實驗架構與流程 24
3-2 實驗材料 25
3-3 實驗設置與分析儀器 26
3-3-1 近紅外光雷射系統及光路設計 26
3-3-2 雷射參數 27
3-3-3 Keyence 雷射共軛焦顯微鏡 — 輪廓檢測 28
3-3-4 Xyztec sigma 焊接強度測試儀 — 90∘剝離測試 29
3-3-5 試片鑲埋處理與機械研磨 31
3-4 實驗儀器設備清單 32
四、 結果與討論 33
4-1 雷射焊接之機制與參數影響 34
4-1-1 焊接機制 34
4-1-2 焊接參數影響 35
4-1-3 掃描策略選定 42
4-2 雷射焊接強度量測與結果討論 43
4-2-1 焊接接頭的破壞方式 43
4-2-2 不同參數對焊接結果的影響 45
4-2-3 剝離速度與剝離強度的關係 47
4-2-4 焊接過程與可焊範圍 49
4-2-5 掃描次數、焊接結果與機械強度的關係 52
4-3 連續雷射與脈衝式雷射對焊接結果比較 55
五、 結論 56
參考文獻 58
碩士論文口試教授問題集 61
參考文獻 [1] 王則翰. "PCB(印刷電路板)是什麼?PCB 概念股有哪些?PCB 產業介紹!." https://www.stockfeel.com.tw/pcb-%E5%8D%B0%E5%88%B7%E9%9B%BB%E8%B7%AF%E6%9D%BF-%E7%A8%AE%E9%A1%9E-%E8%A3%BD%E7%A8%8B/ (accessed.
[2] "印刷電路板產業鏈簡介." https://ic.tpex.org.tw/introduce.php?ic=L000 (accessed.
[3] S. T. Auwal, S. Ramesh, F. Yusof, and S. M. Manladan, "A review on laser beam welding of copper alloys," The International Journal of Advanced Manufacturing Technology, vol. 96, no. 1, pp. 475-490, 2018/04/01 2018, doi: 10.1007/s00170-017-1566-5.
[4] J. R. Deepak, A. R.P, and S. Saran Sundar, "Applications of lasers in industries and laser welding: A review," Materials Today: Proceedings, 2023/02/28/ 2023, doi: https://doi.org/10.1016/j.matpr.2023.02.102.
[5] Y.-S. Tang, Y.-J. Chang, and K.-N. Chen, "Wafer-level Cu–Cu bonding technology," Microelectronics Reliability, vol. 52, no. 2, pp. 312-320, 2012/02/01/ 2012, doi: https://doi.org/10.1016/j.microrel.2011.04.016.
[6] L. ENTRON Controls, . "RESISTANCE WELDING CONTROLS AND APPLICATIONS." https://www.entroncontrols.com/images/downloads/700101F.pdf (accessed.
[7] TWI Ltd "OXY-FUEL (OXYACETYLENE) WELDING - A GUIDE TO GAS WELDING." https://www.twi-global.com/technical-knowledge/job-knowledge/oxy-fuel-welding-003 (accessed.
[8] A. Kornienko. "Benardos Nikolai Nikolaevich and his famous invention." https://kpi.ua/en/benardos (accessed.
[9] O. Kjellberg, "Elektrode und Verfahren zum elektrischen Löten.," 1908.
[10] L. T. K. Jones, Harry Edward; Rothermund, Maynard Arthur, "Electric welding," 1935.
[11] I. Longevity Global, . "TIG Welding Basics." https://www.longevity-inc.com/resources/resources/improving-your-skills/tig-welding-basics (accessed.
[12] TWI Ltd "METAL INERT GAS (MIG) WELDING - PROCESS AND APPLICATIONS." TWI Ltd. https://www.twi-global.com/technical-knowledge/job-knowledge/mig-welding-004 (accessed.
[13] WA Technology "HISTORY OF WELDING - IN THE BEGINNING." WA Technology. http://netwelding.com/History%20of%20Welding.htm (accessed.
[14] M. S. Węglowski, S. Błacha, and A. Phillips, "Electron beam welding–Techniques and trends–Review," Vacuum, vol. 130, pp. 72-92, 2016.
[15] E. D. N. a. W. M. T. Stephan W. Kallee. "FRICTION STIR WELDING: INVENTION, INNOVATION AND APPLICATION." TWI Ltd. https://www.twi-global.com/technical-knowledge/published-papers/friction-stir-welding-invention-innovations-and-applications-march-2001 (accessed.
[16] K. Weman, "1 - Introduction to welding," in Welding Processes Handbook (Second Edition), K. Weman Ed.: Woodhead Publishing, 2012, pp. 1-12.
[17] Cambridge Vacuum Engineering. "Electron Beam vs Laser Welding." https://camvaceng.com/case-study/electron-beam-vs-laser-welding/ (accessed.
[18] S. Elena-Manuela, A. Păvălache, D. Gabriel, O. Dontu, B. Daniel, and I. Vasile, "Mechanism of keyhole formation in laser welding," Romanian Review Precision Mechanics, Optics and Mechatronics, 01/01 2010.
[19] Team Xometry. "5-Step Laser Welding Process: How Does It Work?" Xometry. https://www.xometry.com/resources/sheet/laser-welding-process/ (accessed.
[20] KEYENCE. "雷射焊接的技巧." KEYENCE. https://www.keyence.com.tw/ss/products/measure/welding/laser/advanced.jsp (accessed.
[21] S. Pang, X. Chen, X. Shao, S. Gong, and J. Xiao, "Dynamics of vapor plume in transient keyhole during laser welding of stainless steel: Local evaporation, plume swing and gas entrapment into porosity," Optics and Lasers in Engineering, vol. 82, pp. 28-40, 2016/07/01/ 2016, doi: https://doi.org/10.1016/j.optlaseng.2016.01.019.
[22] J.-H. Cho and S.-J. Na, "Implementation of real-time multiple reflection and Fresnel absorption of laser beam in keyhole," Journal of Physics D: Applied Physics, vol. 39, no. 24, p. 5372, 2006/12/01 2006, doi: 10.1088/0022-3727/39/24/039.
[23] R. Iovana, D. G. Petre, and I. C. Roat, "INDUSTRIAL APPLICATION OF HIGH POWER DIODE PUMPED SOLID STATE LASER FOR WELDING TECHNOLOGY," 2009.
[24] M. R. Maina, Y. Okamoto, R. Inoue, S.-i. Nakashiba, A. Okada, and T. Sakagawa, "Influence of Surface State in Micro-Welding of Copper by Nd:YAG Laser," Applied Sciences, vol. 8, no. 12, p. 2364, 2018. [Online]. Available: https://www.mdpi.com/2076-3417/8/12/2364.
[25] J.-M. Drezet, S. Pellerin, C. Bezençon, and S. Mokadem, "Modelling the Marangoni convection in laser heat treatment," in Journal de Physique IV (Proceedings), 2004, vol. 120: EDP sciences, pp. 299-306.
[26] L. Quintino and E. Assunção, "Conduction laser welding," in Handbook of Laser Welding Technologies, S. Katayama Ed.: Woodhead Publishing, 2013, pp. 139-162.
[27] L. Quintino and E. Assunção, "6 - Conduction laser welding," in Handbook of Laser Welding Technologies, S. Katayama Ed.: Woodhead Publishing, 2013, pp. 139-162.
[28] AMADA WELD TECH. "Laser Welding Modes: Conduction, Transition, & Keyhole Welding." Amada Co. Ltd. https://amadaweldtech.com/blog/laser-welding-modes-conduction-transition-keyhole-welding/ (accessed.
[29] K. Ito, T. Shibata, and T. Kawasaki, "Development of High Voltage Wire for New Structure Motor in Full Hybrid Vehicle," 2016, doi: https://doi.org/10.4271/2016-01-1221.
[30] D. Petring and V. N. Goneghany, "Parameter Dependencies of Copper Welding with Multi-kW Lasers at 1 Micron Wavelength," Physics Procedia, vol. 12, pp. 95-104, 2011/01/01/ 2011, doi: https://doi.org/10.1016/j.phpro.2011.03.013.
[31] U. D. Christoph Rüttimann, and Anas Moalem "Reliable laser micro-welding of copper," in PICALO 2010: 4th Pacific International Conference on Laser Materials Processing, Micro, Nano and Ultrafast Fabrication, Wuhan, People’s Republic of China, 2010, doi: 10.2351/1.5062145.
[32] C. Wang, F. Wang, Y. Qin, F. Wang, and X. Yuan, "Micro-spot-welding of copper sheets with an IR vortex beam," Chin. Opt. Lett., vol. 20, no. 4, p. 041404, 2022/04/10 2022. [Online]. Available: https://opg.optica.org/col/abstract.cfm?URI=col-20-4-041404.
[33] A. Moalem, P. von Witzendorff, U. Stute, and L. Overmeyer, "Reliable Copper Spot Welding with IR Laser Radiation through Short Prepulsing," Procedia CIRP, vol. 3, pp. 459-464, 2012/01/01/ 2012, doi: https://doi.org/10.1016/j.procir.2012.07.079.
[34] KEYENCE. "氣體雷射與固體雷射/半導體雷射的差異." KEYENCE. https://www.keyence.com.tw/ss/products/measure/welding/laser/difference.jsp (accessed.
[35] S. Katayama, Fundamentals and details of laser welding. Springer, 2020.
[36] M. Francioso, C. Angeloni, A. Fortunato, E. Liverani, and A. Ascari, "Experimental Investigation on the Effect of Nickel-plating Thickness on Continuous-wave Laser Welding of Copper and Steel Tab Joints for Battery Manufacturing," Lasers in Manufacturing and Materials Processing, 2024/02/13 2024, doi: 10.1007/s40516-024-00246-9.
[37] A. Heider, P. Stritt, R. Weber, and T. Graf, "High-power laser sources enable high-quality laser welding of copper," in International Congress on Applications of Lasers & Electro-Optics, 2014, vol. 2014, no. 1: Laser Institute of America, pp. 343-348.
[38] V. Dimatteo, A. Ascari, E. Liverani, and A. Fortunato, "Experimental investigation on the effect of spot diameter on continuous-wave laser welding of copper and aluminum thin sheets for battery manufacturing," Optics & Laser Technology, vol. 145, p. 107495, 2022/01/01/ 2022, doi: https://doi.org/10.1016/j.optlastec.2021.107495.
[39] A. Ascari, A. Fortunato, and V. Dimatteo, "Short pulse laser welding of aluminum and copper alloys in dissimilar configuration," Journal of Laser Applications, vol. 32, no. 2, 2020.04.28 2020, doi: 10.2351/7.0000073.
[40] A. Kumar et al., "Micro-Welding of Stainless Steel and Copper Foils Using a Nano -Second Pulsed Fiber Laser," Lasers in Manufacturing and Materials Processing, vol. 6, no. 2, pp. 158-172, 2019/06/01 2019, doi: 10.1007/s40516-019-00088-w.
[41] E. Perez Zapico, A. Ascari, A. Fortunato, E. Liverani, and V. Dimatteo, "Influence of process parameters in blue laser welding of copper and aluminum thin sheets," Journal of Laser Applications, vol. 34, no. 4, 2022, doi: 10.2351/7.0000836.
[42] L. Jia, H. Yang, Y. Wang, B. Zhang, H. Liu, and J. Hao, "Direct bonding of copper foil and liquid crystal polymer by laser etching and welding," Optics and Lasers in Engineering, vol. 139, p. 106509, 2021/04/01/ 2021, doi: https://doi.org/10.1016/j.optlaseng.2020.106509.
[43] JHYPCB. "The Historical Timeline And Outlook Of Printed Circuit Boards." https://www.pcbelec.com/the-history-of-pcb-evolution.html (accessed.
[44] PCB. "PCB電路板發展史簡介." https://www.ipcb.tw/news/420.html (accessed.
[45] B. K. Appelt, "Advanced Substrates: A Materials and Processing Perspective," in Materials for Advanced Packaging, D. Lu and C. P. Wong Eds. Cham: Springer International Publishing, 2017, pp. 287-329.
[46] C. L. Gan and C.-Y. Huang, "Advanced Flip Chip Packaging," in Interconnect Reliability in Advanced Memory Device Packaging, C. L. Gan and C.-Y. Huang Eds. Cham: Springer International Publishing, 2023, pp. 67-94.
[47] Ray. "CCL(銅箔基板)是什麼?CCL 概念股有哪些?CCL 受惠 AI 伺服器?." https://www.stockfeel.com.tw/ccl-%E9%8A%85%E7%AE%94%E5%9F%BA%E6%9D%BF-ccl%E6%A6%82%E5%BF%B5%E8%82%A1/ (accessed.
[48] KEYENCE. "3D Surface Profiler." https://www.keyence.com/products/microscope/laser-microscope/vk-x3000/ (accessed.
[49] xyztec. "Sigma 先進推拉力測試機." https://www.xyztec.com/zh-hant/%E7%94%A2%E5%93%81%E7%B7%9A/sigma/ (accessed.
[50] Hitachi High-Technologies. "Ultra-high Resolution Scanning Electron Microscope SU8200 Series." https://www.hitachi-hightech.com/file/ca/pdf/library/literature/SU8200-CFE-SEM-HTD-E210.pdf (accessed.
[51] N. Amanat, C. Chaminade, J. Grace, D. R. McKenzie, and N. L. James, "Transmission laser welding of amorphous and semi-crystalline poly-ether–ether–ketone for applications in the medical device industry," Materials & Design, vol. 31, no. 10, pp. 4823-4830, 2010/12/01/ 2010, doi: https://doi.org/10.1016/j.matdes.2010.04.051.
[52] N. Saiki, K. Inaba, K. Kishimoto, H. Seno, and K. Ebe, "Study on Peeling Behavior in Pick-up Process of IC Chip with Adhesive Tapes," Journal of Solid Mechanics and Materials Engineering, vol. 4, no. 7, pp. 1051-1060, 2010, doi: 10.1299/jmmp.4.1051.
指導教授 何正榮(Jeng-Rong Ho) 審核日期 2024-8-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明