博碩士論文 111326010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:45 、訪客IP:18.191.195.57
姓名 游雯琪(Wen-Chi Yu)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 以一鍋式酵素串聯法將聚乳酸塑膠轉化為胺基酸
(Synthesis of amino acids from polylactic acid plastics waste, carbon dioxide, and ammonium via a one-pot enzymatic cascade)
相關論文
★ 利用巨大芽孢桿菌轉化魚廢和蔗渣為Alcalase之綠色循環模組★ 利用微生物酵素水解高油脂肉廢污泥之技術開發
★ 利用巨大芽孢桿菌將豆渣轉化為生物製造 蛋白質原料之綠色循環模組★ 應用聚乳酸塑膠於聚乳酸-蘋果酸膠體共聚物之低溫永續製程
★ 利用枯草芽孢桿菌轉化魚內臟之亮胺酸為酮異己酸★ 以酵素法萃煉微藻污泥之長鏈均質聚磷酸鹽
★ 利用一鍋式高溫蛋白酶串聯反應將豆渣升級再造為生物永續製造之蛋白質原料
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著人口增長,塑膠聚合物生產與使用量快速增加,一次性塑膠產品的普及使得塑膠汙染不斷加劇,塑膠污染被全世界公認為長期性的共同問題,聚乳酸 (poly lactic acid, PLA)是一種在全球廣泛使用的可生物降解塑膠材料,被使用後通常作為廢棄物處理,但卻仍有一半以上比例的塑膠廢棄物流佈於自然環境中,已然成為對自然生態系統、人類健康的永久性跨境威脅。PLA由於其單體乳酸可以透過L-乳酸脫氫酶 (L-lactate dehydrogenase, L-LDH)一步轉化為中心代謝物丙酮酸 (胺基酸前體),因此可將之視為一種低成本的蛋白質合成來源。故本研究建立了一個一鍋法 (one-pot)多酶串聯反應,將L-LA (PLA單體)、CO2和NH4+透過丙酮酸中間體,轉化為四種氨基酸-天門冬胺酸 (Aspartic acid, Asp)、天門冬醯胺 (Asparagine, Asn)、麩胺酸 (Glutamic acid, Glu)及麩醯胺酸 (Glutamine, Gln),並將其應用至至無細胞蛋白質合成系統 (Cell-free protein synthesis system)。本研究以酵素催化之過程中固定了一個碳以及三個銨,其中,碳的固定成功減少二氧化碳溫室氣體,氨氮可來自於畜牧廢水,此外本研究為內部氧化還原輔因子 (cofactor)再生循環系統,不須額外添加大量且昂貴的輔因子菸鹼醯胺腺嘌呤二核苷酸 (nicotinamide adenine dinucleotide, NAD+ and NADH),既符合經濟效益且兼顧有效地減少碳排放及氨氮廢水,在解決塑膠廢棄問題的同時,更能夠在可持續發展的框架下推動綠色經濟的進一步增長。
摘要(英) The escalating production and use of plastic polymers due to population growth have exacerbated global plastic pollution, recognized as a persistent and widespread issue. Poly lactic acid (PLA), a commonly used biodegradable plastic, contributes significantly to this problem, with over half of its waste polluting natural environments. To address this, a study focused on PLA′s unique properties, specifically its conversion potential into essential amino acids via NAD+-dependent L-lactate dehydrogenase (L-LDH). Establishing a one-pot multi-enzyme cascade reaction, the study efficiently transformed PLA monomers, CO2, and NH4+ into four amino acids: aspartic acid, asparagine, glutamic acid, and glutamine. Utilizing a cell-free protein synthesis system, this approach offers a sustainable solution to plastic waste management. By incorporating multiple enzyme cascades and an internal redox cofactor regeneration cycle system, the study effectively reduced carbon emissions and ammonium nitrogen wastewater, sourced from livestock farming. This economically viable strategy not only addresses plastic waste but also fosters green economic growth within a sustainable development framework.
關鍵字(中) ★ 聚乳酸
★ 循環生物經濟
★ 生物可分解塑膠
★ 胺基酸
★ 一鍋式酶串聯
★ 無細胞蛋白質合成系統
關鍵字(英) ★ polylactic acid
★ circular bioeconomy
★ biodegradable plastic
★ amino acids
★ one-pot multi-enzyme cascade
★ cell-free protein synthesis system
論文目次 摘要 i
目錄 iv
圖目錄 vii
表目錄 xi
第一章 前言 1
1.1 研究背景 1
1.2 研究動機與目的 1
第二章 文獻回顧 4
2.1 塑膠廢棄物的處理 4
2.2 聚乳酸 7
2.2.1聚乳酸之特性 7
2.2.2聚乳酸之應用 7
2.3 酵素 9
2.3.1 酵素動力學 9
2.3.2 麩胺酸脫氫酶 (Glutamate dehydrogenase, GDH) 11
2.3.3 麩胺醯胺合成酶 (Glutamine synthetase, GLNS) 12
2.3.4 天門冬胺酸轉胺酶 (Glutamic oxaloacetic transaminase, GOT) 13
2.3.5 天門冬醯胺合成酶 (Asparagine synthetase, ASNS) 13
2.4 胺基酸 15
2.4.1 麩胺酸 (Glu) 17
2.4.2麩醯胺酸 (Gln) 18
2.4.3天門冬胺酸 (Asp) 18
2.4.4天門冬醯胺 (Asn) 18
2.5 無細胞蛋白質合成系統 (cell-free protein synthesis systems, PUREfrex) 19
第三章 材料與方法 20
3.1 實驗架構 20
3.2 實驗材料與設備 21
3.2.1 實驗菌種 21
3.2.2 實驗酵素 23
3.2.3 實驗藥品 25
3.2.4 實驗設備 26
3.3 菌種培養與保存 27
3.3.1 菌種保存 27
3.3.2 菌種培養 27
3.4 目標蛋白表達 27
3.5 目標蛋白質純化 28
3.6 蛋白質之分子量分析 30
3.7 蛋白質之定量 31
3.8 從塑膠顆粒製備乳酸 31
3.9聚磷酸鹽 (polyphosphate)之檢測 31
3.10特性分析 32
3.10.1 高效液相層析 (High Performance Liquid Chromatography, HPLC)定性定量胺基酸 32
3.10.2 高效液相層析 (High Performance Liquid Chromatography, HPLC)定性定量乳酸、AKG 34
3.10.3 電噴霧電離液相層析-質譜分析 (Electrospray Ionization Liquid Chromatography-Mass, ESI-LC-MS)定性胺基酸 34
3.10.4 Hexokinase (HK)/glucose-6-phosphate dehydrogenase定量ATP 35
第四章 結果與討論 36
4.1 熱力學模擬 36
4.2 GDH酵素動態分析 38
4.3 合成Aspartate (GOT酵素動態分析) 39
4.4 合成Asparagine (ASNS酵素動態分析) 40
4.5 合成反應所需輔因子-乙醯輔酶A (Acyl-CoA, Ac-CoA) 42
4.5 一鍋式合成三種胺基酸 (Glu、Asp及Asn) 43
4.6 一鍋式合成四種胺基酸 (Glu、Gln、Asp及Asn) 45
4.7 一鍋式合成四種胺基酸優化 49
4.7.1 能量再生系統-CK與PPK2之比較 49
4.7.2 調整GLNS與ASNS濃度 50
4.7.3 增加受質NH3、AKG、Lac量 51
4.7.4 調整二價金屬Mg2+與Mn2+ 51
4.7.5 加入腺苷酸激酶 (adenylate kinase, ADK) 54
4.8 受質與胺基酸的Time-dependent分析 55
4.9 無機碳及銨的固定化 56
4.10 一鍋式酵素合成胺基酸結合至PUREfrex 58
第五章 結論與建議 61
5.1 結論 61
5.2 建議 61
參考文獻 62
附錄 68
參考文獻 Ager, D. J., Pantaleone, D. P., Henderson, S. A., Katritzky, A. R., Prakash, I., & Walters, D. E. (1998). Commercial, synthetic nonnutritive sweeteners. Angewandte Chemie International Edition, 37 (13‐14), 1802-1817.
Agresti, J. J., Antipov, E., Abate, A. R., Ahn, K., Rowat, A. C., Baret, J.-C., Marquez, M., Klibanov, A. M., Griffiths, A. D., & Weitz, D. A. (2010). Ultrahigh-throughput screening in drop-based microfluidics for directed evolution. Proceedings of the National Academy of Sciences, 107 (9), 4004-4009.
Ahmed, J., & Varshney, S. K. (2011). Polylactides—chemistry, properties and green packaging technology: a review. International journal of food properties, 14 (1), 37-58.
Álvarez-Chávez, C. R., Edwards, S., Moure-Eraso, R., & Geiser, K. (2012). Sustainability of bio-based plastics: general comparative analysis and recommendations for improvement. Journal of cleaner production, 23 (1), 47-56.
Anguera, M. C., Field, M. S., Perry, C., Ghandour, H., Chiang, E.-P., Selhub, J., Shane, B., & Stover, P. J. (2006). Regulation of folate-mediated one-carbon metabolism by 10-formyltetrahydrofolate dehydrogenase. Journal of Biological Chemistry, 281 (27), 18335-18342.
Berhanu, S., Ueda, T., & Kuruma, Y. (2019). Artificial photosynthetic cell producing energy for protein synthesis. Nature communications, 10 (1), 1325.
Chamas, A., Moon, H., Zheng, J., Qiu, Y., Tabassum, T., Jang, J. H., Abu-Omar, M., Scott, S. L., & Suh, S. (2020). Degradation rates of plastics in the environment. ACS Sustainable Chemistry & Engineering, 8 (9), 3494-3511.
Chandra, R., & Rustgi, R. (1998). Biodegradable polymers. Progress in polymer science, 23 (7), 1273-1335.
Chang, A., Jeske, L., Ulbrich, S., Hofmann, J., Koblitz, J., Schomburg, I., Neumann-Schaal, M., Jahn, D., & Schomburg, D. (2021). BRENDA, the ELIXIR core data resource in 2021: new developments and updates. Nucleic acids research, 49 (D1), D498-D508.
Chen, Z. X., Ding, D., Yu, T., Yang, W. D., Li, Q., & Li, Y. (2022). Enzymatic degradation behaviors and kinetics of bio-degradable jute/poly (lactic acid) (PLA) composites. Composites Communications, 33.
Chhetri, G., Kalita, P., & Tripathi, T. (2015). An efficient protocol to enhance recombinant protein expression using ethanol in Escherichia coli. MethodsX, 2, 385-391.
Distaso, M. A., Chernikova, T. N., Bargiela, R., Coscolin, C., Stogios, P., Gonzalez-Alfonso, J. L., Lemak, S., Khusnutdinova, A. N., Plou, F. J., Evdokimova, E., Savchenko, A., Lunev, E. A., Yakimov, M. M., Golyshina, O. V., Ferrer, M., Yakunin, A. F., & Golyshin, P. N. (2023). Thermophilic carboxylesterases from hydrothermal vents of the volcanic island of ischia active on synthetic and biobased polymers and mycotoxins. Applied and Environmental Microbiology, 89 (2).
Farah, S., Anderson, D. G., & Langer, R. (2016). Physical and mechanical properties of PLA, and their functions in widespread applications—A comprehensive review. Advanced drug delivery reviews, 107, 367-392.
Flachs, D., Zhukov, S., Zech, I., Schreck, T., Belle, S., von Seggern, H., Kupnik, M., Altmann, A. A., & Thielemann, C. (2024). Enzymatic self-degradable PLA-based electrets. Journal of Polymers and the Environment.
Fonnum, F. (1984). Glutamate: a neurotransmitter in mammalian brain. Journal of neurochemistry, 42 (1), 1-11.
Frank, M. P., & Powers, R. W. (2007). Simple and rapid quantitative high-performance liquid chromatographic analysis of plasma amino acids. Journal of chromatography B, 852 (1-2), 646-649.
Fujita, S., Kawamura, I., & Kawano, R. (2023). Cell-free expression of de novo designed peptides that form β-barrel nanopores. Acs Nano, 17 (4), 3358-3367.
Ganor, Y., & Levite, M. (2012). Glutamate in the immune system: glutamate receptors in immune cells, potent effects, endogenous production and involvement in disease. In Nerve-driven immunity: neurotransmitters and neuropeptides in the immune system, 121-161. Springer.
Garratt, A., Nguyen, K., Brooke, A., Taylor, M. J., & Francesconi, M. G. (2023). Photocatalytic hydrolysis─a sustainable option for the chemical upcycling of polylactic acid. ACS Environmental Au, 3 (6), 342-347.
Gupta, B., Revagade, N., & Hilborn, J. (2007). Poly (lactic acid) fiber: An overview. Progress in polymer science, 32 (4), 455-482.
Hagino, K., & Ichihashi, N. (2023). In vitro transcription/translation-coupled DNA replication through partial regeneration of 20 Aminoacyl-tRNA Synthetases. ACS Synthetic Biology, 12 (4), 1252-1263.
Hajighasemi, M., Nocek, B. P., Tchigvintsev, A., Brown, G., Flick, R., Xu, X. H., Cui, H., Hai, T., Joachimiak, A., Golyshin, P. N., Savchenko, A., Edwards, E. A., & Yakunin, A. F. (2016). Biochemical and structural insights into enzymatic depolymerization of polylactic acid and other polyesters by microbial carboxylesterases. Biomacromolecules, 17 (6), 2027-2039.
Hajighasemi, M., Tchigvintsev, A., Nocek, B., Flick, R., Popovic, A., Hai, T., Khusnutdinova, A. N., Brown, G., Xu, X. H., Cui, H., Anstett, J., Chernikova, T. N., Brüls, T., Le Paslier, D., Yakimov, M. M., Joachimiak, A., Golyshina, O. V., Savchenko, A., Golyshin, P. N., . . . Yakunin, A. F. (2018). Screening and characterization of novel polyesterases from environmental metagenomes with high hydrolytic activity against synthetic polyesters. Environmental science & technology, 52 (21), 12388-12401.
Hirasawa, T., Kim, J., Shirai, T., Furusawa, C., & Shimizu, H. (2012). Molecular mechanisms and metabolic engineering of glutamate overproduction in Corynebacterium glutamicum. Reprogramming Microbial Metabolic Pathways, 261-281.
Hong, S. H., Ntai, I., Haimovich, A. D., Kelleher, N. L., Isaacs, F. J., & Jewett, M. C. (2014). Cell-free protein synthesis from a release factor 1 deficient Escherichia coli activates efficient and multiple site-specific nonstandard amino acid incorporation. ACS Synthetic Biology, 3 (6), 398-409.
Hussein, Z. A., Shakor, Z. M., Alzuhairi, M., & Al-Sheikh, F. (2023). Thermal and catalytic cracking of plastic waste: a review. International Journal of Environmental Analytical Chemistry, 103 (17), 5920-5937.
Intasian, P., Prakinee, K., Phintha, A., Trisrivirat, D., Weeranoppanant, N., Wongnate, T., & Chaiyen, P. (2021). Enzymes, in vivo biocatalysis, and metabolic engineering for enabling a circular economy and sustainability. Chemical Reviews, 121 (17), 10367-10451.
Islam, M. N., Sueda, S., & Kondo, H. (2005). Construction of new forms of pyruvate carboxylase to assess the allosteric regulation by acetyl-CoA. Protein Engineering Design & Selection, 18 (2), 71-78.
Jewett, M. C., & Swartz, J. R. (2004). Mimicking the Escherichia coli cytoplasmic environment activates long‐lived and efficient cell‐free protein synthesis. Biotechnology and bioengineering, 86 (1), 19-26.
Jiang, S., Wang, J., Qiao, S., & Zhou, J. (2021). Phosphate recovery from aqueous solution through adsorption by magnesium modified multi-walled carbon nanotubes. Science of the total environment, 796, 148907.
Jiang, X., Ookubo, Y., Fujii, I., Nakano, H., & Yamane, T. (2002). Expression of Fab fragment of catalytic antibody 6D9 in an Escherichia coli in vitro coupled transcription/translation system. FEBS letters, 514 (2-3), 290-294.
Kawai, F., Nakadai, K., Nishioka, E., Nakajima, H., Ohara, H., Masaki, K., & Iefuji, H. (2011). Different enantioselectivity of two types of poly (lactic acid) depolymerases toward poly (L-lactic acid) and poly (D-lactic acid). Polymer Degradation and Stability, 96 (7), 1342-1348.
Kim, D. M., & Swartz, J. R. (2001). Regeneration of adenosine triphosphate from glycolytic intermediates for cell‐free protein synthesis. Biotechnology and bioengineering, 74 (4), 309-316.
Kim, M.-H., & Kim, H. (2017). The roles of glutamine in the intestine and its implication in intestinal diseases. International journal of molecular sciences, 18 (5), 1051.
Kim, T.-W., Keum, J.-W., Oh, I.-S., Choi, C.-Y., Park, C.-G., & Kim, D.-M. (2006). Simple procedures for the construction of a robust and cost-effective cell-free protein synthesis system. Journal of biotechnology, 126 (4), 554-561.
Kim, T. W., Chokhawala, H. A., Hess, M., Dana, C. M., Baer, Z., Sczyrba, A., Rubin, E. M., Blanch, H. W., & Clark, D. S. (2011). High‐throughput in vitro glycoside hydrolase (HIGH) screening for enzyme discovery. Angewandte Chemie-International Edition, 50 (47), 11215.
Klammt, C., Löhr, F., Schäfer, B., Haase, W., Dötsch, V., Rüterjans, H., Glaubitz, C., & Bernhard, F. (2004). High level cell‐free expression and specific labeling of integral membrane proteins. European Journal of Biochemistry, 271 (3), 568-580.
Kulkarni, P. S., Crespo, J. G., & Afonso, C. A. (2008). Dioxins sources and current remediation technologies—a review. Environment international, 34 (1), 139-153.
Lavickova, B., Laohakunakorn, N., & Maerkl, S. J. (2020). A partially self-regenerating synthetic cell. Nature communications, 11 (1), 6340.
Lee, S., Lee, J., & Park, Y.-K. (2022). Simultaneous upcycling of biodegradable plastic and sea shell wastes through thermocatalytic monomer recovery. ACS Sustainable Chemistry & Engineering, 10 (42), 13972-13979.
Li, Y., Ogola, H. J. O., & Sawa, Y. (2012). L-Aspartate dehydrogenase: features and applications. Applied microbiology and biotechnology, 93, 503-516.
Li, Y., Wang, M., Liu, X., Hu, C., Xiao, D., & Ma, D. (2022). Catalytic transformation of PET and CO2 into high‐value chemicals. Angewandte Chemie, 134 (10), e202117205.
Libicher, K., Hornberger, R., Heymann, M., & Mutschler, H. (2020). In vitro self-replication and multicistronic expression of large synthetic genomes. Nature communications, 11 (1), 904.
Lin, Y.-H., Nishikawa, S., Jia, T. Z., Yeh, F.-I., Khusnutdinova, A., Yakunin, A. F., Fujishima, K., & Wang, P.-H. (2023). One-pot chemo-enzymatic synthesis and one-step recovery of length-variable long-chain polyphosphates from microalgal biomass. Green Chemistry, 25 (23), 9896-9907.
Lu, S., Feng, C., Gao, C., Wang, X., Xu, X., Bai, X., Gao, N., & Liu, M. (2016). Multifunctional environmental smart fertilizer based on L-aspartic acid for sustained nutrient release. Journal of agricultural and food chemistry, 64 (24), 4965-4974.
Maloy, S., & Hughes, K. (2013). Brenner′s encyclopedia of genetics. Academic Press.
Miflin, B. J., & Habash, D. Z. (2002). The role of glutamine synthetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops. Journal of experimental botany, 53 (370), 979-987.
Morseletto, P. (2020). Targets for a circular economy. Resources, Conservation and Recycling, 153, 104553.
Nampoothiri, K. M., Nair, N. R., & John, R. P. (2010). An overview of the recent developments in polylactide (PLA) research. Bioresource technology, 101 (22), 8493-8501.
Niaounakis, M. (2013). Biopolymers: reuse, recycling, and disposal. William Andrew.
Ohtomo, R., Sekiguchi, Y., Mimura, T., Saito, M., & Ezawa, T. (2004). Quantification of polyphosphate: different sensitivities to short-chain polyphosphate using enzymatic and colorimetric methods as revealed by ion chromatography. Analytical biochemistry, 328 (2), 139-146.
Orth, J. H., Schorch, B., Boundy, S., Ffrench-Constant, R., Kubick, S., & Aktories, K. (2011). Cell-free synthesis and characterization of a novel cytotoxic pierisin-like protein from the cabbage butterfly Pieris rapae. Toxicon, 57 (2), 199-207.
Pandi, A., Adam, D., Zare, A., Trinh, V. T., Schaefer, S. L., Burt, M., Klabunde, B., Bobkova, E., Kushwaha, M., & Foroughijabbari, Y. (2023). Cell-free biosynthesis combined with deep learning accelerates de novo-development of antimicrobial peptides. Nature communications, 14 (1), 7197.
Ray, K., & Mukherjee, C. (2015). An improved method for extraction and quantification of polyphosphate granules from microbial cells.
Roth, E. (2008). Nonnutritive effects of glutamine. The Journal of nutrition, 138 (10), 2025S-2031S.
Siracusa, V., Rocculi, P., Romani, S., & Dalla Rosa, M. (2008). Biodegradable polymers for food packaging: a review. Trends in food science & technology, 19 (12), 634-643.
Song, Z., Yang, Y., Wu, Y., Zheng, M., Sun, D., Li, H., & Chen, L. (2022). Glutamic oxaloacetic transaminase 1 as a potential target in human cancer. European Journal of Pharmacology, 917, 174754.
Tian, S. H., Jiao, Y. C., Gao, Z. R., Xu, Y., Fu, L. K., Fu, H., Zhou, W., Hu, C. Q., Liu, G. S., Wang, M., & Ma, D. (2021). Catalytic amination of polylactic acid to alanine. Journal of the American Chemical Society, 143 (40), 16358-16363.
Wang, J., Zhang, S., Han, Y., Zhang, L., Wang, Q., Wang, G., & Zhang, X. (2022). UiO-66 (Zr/Ti) for catalytic PET polycondensation. Molecular Catalysis, 532, 112741.
Wang, P.-H., Nishikawa, S., McGlynn, S. E., & Fujishima, K. (2023). One-Pot De novo synthesis of [4Fe-4S] proteins using a recombinant SUF system under aerobic conditions. ACS synthetic biology, 12 (10), 2887-2896.
Wang, Q., Geng, Y., Lu, X., & Zhang, S. (2015). First-row transition metal-containing ionic liquids as highly active catalysts for the glycolysis of poly (ethylene terephthalate) (PET). ACS Sustainable Chemistry & Engineering, 3 (2), 340-348.
Wang, W., Wu, Z., Dai, Z., Yang, Y., Wang, J., & Wu, G. (2013). Glycine metabolism in animals and humans: implications for nutrition and health. Amino acids, 45, 463-477.
Weber, C., Haugaard, V., Festersen, R., & Bertelsen, G. (2002). Production and applications of biobased packaging materials for the food industry. Food Additives & Contaminants, 19 (S1), 172-177.
Wu, G. (2009). Amino acids: metabolism, functions, and nutrition. Amino acids, 37, 1-17.
Wu, W., Zhai, H., Wu, K., Wang, X., Rao, W., Ding, J., & Yu, L. (2024). Cheap organocatalyst diphenyl phosphate for efficient chemical recycling of poly (lactic acid), other polyesters and polycarbonates. Chemical Engineering Journal, 480, 148131.
Yamagishi, Y., Shoji, I., Miyagawa, S., Kawakami, T., Katoh, T., Goto, Y., & Suga, H. (2011). Natural product-like macrocyclic N-methyl-peptide inhibitors against a ubiquitin ligase uncovered from a ribosome-expressed de novo library. Chemistry & biology, 18 (12), 1562-1570.
Yang, J., Wang, F., Fang, L., & Tan, T. (2007). The effects of aging tests on a novel chemical sand-fixing agent–Polyaspartic acid. Composites Science and Technology, 67 (10), 2160-2164.
Zeczycki, T. N., Maurice, M. S., & Attwood, P. V. (2010). Inhibitors of pyruvate carboxylase. The open enzyme inhibition journal, 3, 8.
Zhang, J., Pavlova, N. N., & Thompson, C. B. (2017). Cancer cell metabolism: the essential role of the nonessential amino acid, glutamine. The EMBO journal, 36 (10), 1302-1315.
Zhou, X., Lu, X., Wang, Q., Zhu, M., & Li, Z. (2012). Effective catalysis of poly (ethylene terephthalate) (PET) degradation by metallic acetate ionic liquids. Pure and Applied Chemistry, 84 (3), 789-801.
Zhuang, L., Huang, S., Liu, W.-Q., Karim, A. S., Jewett, M. C., & Li, J. (2020). Total in vitro biosynthesis of the nonribosomal macrolactone peptide valinomycin. Metabolic engineering, 60, 37-44.
張基隆, 胡祐甄, 黃姿菁, 鄭筱翎, & 謝寶萱 (2020). 生物化學. In: 華杏出版機構.
循環經濟推動方案. (2019). https://www.ey.gov.tw/Page/5A8A0CB5B41DA11E/18ef26a4-5d05-4fb3-963e-6b228e713576
指導教授 王柏翔(Po-Hsiang Wang) 審核日期 2024-6-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明