博碩士論文 111323068 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:109 、訪客IP:18.226.96.236
姓名 林仁謙(Jen-Chien Lin)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 利用化學氣相沉積法於合成可控性且高密度陣列之二硫化鉬的研究
(Study on the Synthesis of Controlled and High-Density Arrays of Molybdenum Disulfide Using Chemical Vapor Deposition Metho員)
相關論文
★ 利用化學氣相沉積法於規模化合成大面積石墨烯之研究★ 電化學輔助剝離於乾轉印大面積與超潔凈石墨烯之研究
★ 利用網印方法製備全固態石墨烯複合電極於高能量密度之微型電容的研究★ 有效披覆黑磷烯的穩定性之研究
★ Phosphorus and Nitrogen Dual-doped Graphene Oxide as Metal-free Catalyst for Hydrogen Evolution Reaction★ 利用氟化自組裝膜增強石墨烯與二硫化鉬的電傳輸特性之研究
★ 批量繞捲方法於化學氣相沉積法合成大面積單層與多層石墨烯之研究★ 石墨烯之複合電極於全固態纖維式微型超電容的研究
★ 利用改良液相剝離法提高銻烯合成產率與均質性之研究★ 石墨烯的霍爾效應感測器應用於快速且無標記DNA之研究
★ 利用低損傷電漿改質於提升二硫化鉬電晶體之電傳輸特性★ 石墨烯場效應電晶體應用於鼻咽癌循環腫瘤細胞生醫感測晶片之研究
★ 化學氣相沉積法合成二硫化鉬於矽基材料之可控性及變異性研究★ 使用低損傷電漿改質於提升二維通道電晶體電傳輸特性
★ 利用電化學剝離石墨烯之三維多孔隙電極於製作可撓式超級電容★ 懸空石墨烯之特性研究與應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-7-1以後開放)
摘要(中) 近年來,二維(2D)材料因其優異的材料特性,包括原子層厚度、尺寸縮小時的高遷移率以及可控能帶結構,而受到廣泛關注和研究,使其被認為是下世代半導體的關鍵候選材料。其中,過渡金屬二硫化物(TMDs)中的二硫化鉬(MoS2)已得到了廣泛的研究,其具有高機械強度、良好熱穩定性與高載子遷移率,在光感應、邏輯電路元件以及高頻通訊等領域都具有廣泛的應用前景。
單層二硫化鉬具有約1.85電子伏特(eV)的半導體能隙,可透過化學氣相沉積法(CVD)製備高品質、大面積且均勻的連續膜,從而提高了其在半導體工業中的前瞻性。由於晶體晶格匹配性的機制,過去習用藍寶石基板於合成二硫化鉬,而後續仍須要透過轉印製程將其脫附基板並堆疊至目標基材(如氧化矽、氮化矽)上。但這一過程會引入高分子殘留、材料皺褶和破洞等眾多缺陷,而劣化其電性。因此,直接在絕緣基材上進行合成具有重要性。傳統的CVD方法還存在一些局限性,例如生長位置不可控、材料尺寸不均一等問題。
因此,在本研究中,我們提出了以金作為異質成核點位的高度可控晶體生長方法,藉由反應能障上的差異,可以於氧化矽基板上預訂的成核點位生長出結晶尺寸為10微米的單層二硫化鉬。透過光致發光(PL)分析,我們發現這些晶體具有半高寬為61毫電子伏特(meV)的高結晶性。此外,在拉曼光譜和光致發光的製圖檢測(Mapping)中顯示,這些單晶為單層且具有高均勻度與結晶性。利用這種方法,我們可以獲得均一尺寸且大面積地單晶二硫化鉬點陣列(50×50),隨後進行閘極、汲極和源極的製作,從而製備出二維場效應電晶體。此一方法避免了轉印及電晶體區蝕刻步驟,並且相容於目前半導體製程,大幅減少製程複雜性及成本。
摘要(英) In recent years, two-dimensional (2D) materials have garnered significant attention and research interest due to their exceptional material properties, including atomic layer thickness, high mobility at reduced dimensions, and tunable band structures. These attributes position 2D materials as promising candidates for next-generation semiconductor technologies. Among these materials, molybdenum disulfide (MoS2) within the transition metal dichalcogenides (TMDs) group has been extensively studied. MoS2 exhibits high mechanical strength, excellent thermal stability, and high carrier mobility, making it highly suitable for applications in photodetection, logic circuits, and high-frequency communications.
Monolayer MoS2 features a semiconductor bandgap of approximately 1.85 eV and can be synthesized into high-quality, large-area, and uniform continuous films through chemical vapor deposition (CVD). This capability enhances its prospects in the semiconductor industry. Traditionally, sapphire substrates have been employed for MoS2 synthesis due to the crystal lattice matching mechanism. However, subsequent processes necessitate the transfer of the MoS2 layer from the sapphire substrate to target substrates such as silicon dioxide (SiO2) or silicon nitride (Si3N4). This transfer introduces numerous defects, including polymer residues, wrinkles, and cracks, which degrade the material′s electrical properties. Consequently, synthesizing MoS2 directly on insulating substrates is of significant importance. Traditional CVD methods have limitations, such as uncontrollable growth locations and non-uniform material sizes.
Therefore, in this study, we propose a highly controllable crystal growth method using gold as a heterogeneous nucleation site. By exploiting differences in reaction energy barriers, we can grow monolayer MoS2 crystals with a size of 10 micrometers at predetermined nucleation sites on a SiO2 substrate. Photoluminescence (PL) analysis reveals that these crystals exhibit high crystallinity with a full width at half maximum (FWHM) of 61 meV. Additionally, Raman spectroscopy and PL mapping indicate that these single crystals are monolayers with high uniformity and crystallinity. Using this method, we can achieve uniform-sized and large-area single-crystal MoS2 arrays (50×50), subsequently fabricating gate, drain, and source electrodes to produce two-dimensional field-effect transistors (FETs). This method avoids transfer and transistor area etching steps, is compatible with current semiconductor processes, and significantly reduces process complexity and cost.
關鍵字(中) ★ 化學氣相沉積
★ 二硫化鉬
關鍵字(英) ★ Chemical Vapor Deposition
★ Molybdenum Disulfide
論文目次 學位論文授權書 i
學位論文延後公開申請書 ii
指導教授推薦書 iii
口試委員審定書 iv
摘要 v
Abstract vi
致謝 viii
目錄 ix
圖目錄 xiii
表目錄 xvi
第一章 緒論 1
1-1 研究背景 1
第二章 文獻回顧與研究動機 5
2-1 過渡金屬二硫屬化物 5
2-2 二硫化鉬簡介 6
2-3 二硫化鉬合成方式 9
2-3-1 物理氣相沉積 9
2-3-2 化學氣相沉積 10
2-4 化學氣相沉積之限制與改善方式 10
2-4-1 成長基板選擇 11
2-4-2 改善沉積均勻度 11
2-4-3 降低反應溫度 13
2-4-4 選擇性成長 15
2-5 研究動機 19
第三章 實驗架構與流程 20
3-1 實驗架構 20
3-2 實驗用品與儀器 20
3-2-1 實驗用品 20
3-2-2 實驗儀器及原理 22
3-3 實驗流程 25
3-3-1 點陣列試片製備 25
3-3-2 試片熱退火與表面處理 26
3-3-3 碳布熱退火 27
3-3-4 化學氣相沉積 27
3-4 材料分析方法 28
3-4-1 光學顯微鏡 28
3-4-2 拉曼光譜 30
3-4-3 光致發光 33
第四章 結果與討論 35
4-1 點陣列試片製備 35
4-1-1 光阻旋塗參數調整 35
4-1-2 曝光劑量調整 35
4-2 試片熱退火製程參數調整 36
4-3 化學氣相沉積 38
4-3-1 利用物理遮罩改善沉積均勻度 38
4-3-2 擺放位置調整 40
4-3-3 載流氣體流量調整 43
4-3-4 前驅物比例調整 45
4-3-5 硫引入參數調整 47
4-4 鹼金屬鹵化物輔助化學氣相沉積 49
4-4-1 添加劑比例調整 49
4-4-2 缺陷分析 50
4-4-3 降低製程溫度效果 51
4-5 控制二硫化鉬生長位置 52
4-5-1 金點位控制效果與分析 52
4-5-2 其他點位材料控制效果與分析 59
4-6 點陣二硫化鉬驗證分析 61
4-6-1 選擇性生長與碳殘留驗證 61
4-6-2 金點位生長機制驗證 62
4-6-3 材料厚度與表面形貌分析 64
4-6-4 材料元素比例分析與鈉殘留驗證 64
4-7 元件製作與電性量測 66
第五章 結論與未來展望 67
5-1 結論 67
5-2 未來展望 68
參考資料 69
參考文獻 [1] Baliga, B.J., Advanced Power MOSFET Concepts. 2010.
[2] Moore, G.E., Cramming more components onto integrated circuits, in Electronics. 1965. p. 82-85.
[3] Salahuddin, S., K. Ni, and S. Datta, The era of hyper-scaling in electronics. Nature Electronics, 2018. 1(8): p. 442-450.
[4] Frank, D.J., et al., Device scaling limits of Si MOSFETs and their application dependencies. Proceedings of the IEEE, 2001. 89(3): p. 259-288.
[5] Dutta, T., et al., Origins of the Short Channel Effects Increase in III-V nMOSFET Technologies, in 2012 13th International Conference on Ultimate Integration on Silicon (ULIS). 2012, IEEE: Grenoble, France. p. 25-28.
[6] Uchida, K., et al., Experimental Study on Carrier Transport Mechanism in Ultrathin-body SOI Thickness less than 5 nm, in IEEE International Electron Devices Meeting (IEDM). 2002: San Francisco, CA, USA. p. 47-50.
[7] Nian Yang a, Jimmie J. Wortman, A study of the effects of tunneling currents and reliability of sub-2 nm gate oxides on scaled n-MOSFETs. Microelectronics Reliability, 2001. 41: p. 37-46.
[8] Wang, Y., et al., Hot Carrier Injection Reliability in Nanoscale Field Effect Transistors: Modeling and Simulation Methods. Electronics, 2022. 11(21): p. 3601.
[9] Das, R.R., T.R. Rajalekshmi, and A. James, FinFET to GAA MBCFET: A Review and Insights. IEEE Access, 2024. 12: p. 50556-50577.
[10] Lyu, P., Q. Wang, and L. Sun, Optimization of Metal Line Thickness & CD and Effect on RC Delay, in 2022 China Semiconductor Technology International Conference (CSTIC). 2022, IEEE: Shanghai, China. p. 1-3.
[11] Chou, H.-C., et al., Strain Evolution in SiGe Nanosheet Transistor Process Flow. IEEE Transactions on Electron Devices, 2024. 71(5): p. 2907-2913.
[12] Samy, O., et al., A Review on MoS2 Properties, Synthesis, Sensing Applications and Challenges. Crystals, 2021. 11(4): p. 355.
[13] Gertych, A.P., et al., Thermal properties of thin films made from MoS2 nanoflakes and probed via statistical optothermal Raman method. Scientific Reports, 2019. 9(1): p. 13338.
[14] Tong, S.W., et al., High Performance Field Effect Transistor based on Large-sized Highly Crystalline MoS2 Single Crystal, in Electron Devices Technology and Manufacturing Conference (EDTM). 2019, IEEE: Singapore. p. 188-190.
[15] Liu, Y., et al., Promises and prospects of two-dimensional transistors. Nature, 2021. 591(7848): p. 43-53.
[16] Tang, J., et al., Low power flexible monolayer MoS2 integrated circuits. Nature Communications, 2023. 14(1): p. 3633.
[17] Radisavljevic, B., et al., Single-layer MoS2 transistors. Nature Nanotechnology, 2011. 6(3): p. 147-150.
[18] Mak, K.F., et al., Atomically thin MoS2: a new direct-gap semiconductor. Physical Review Letter, 2010. 105(13): p. 136805.
[19] Chaves, A., et al., Bandgap engineering of two-dimensional semiconductor materials. npj 2D Materials and Applications, 2020. 4(1): p. 29.
[20] Hsu, Y.T., et al., Topological superconductivity in monolayer transition metal dichalcogenides. Nature Communications, 2017. 8: p. 14985.
[21] Nakata, Y., et al., Robust charge-density wave strengthened by electron correlations in monolayer 1T-TaSe2 and 1T-NbSe2. Nature Communications, 2021. 12(1): p. 5873.
[22] Sipos, B., et al., From Mott state to superconductivity in 1T-TaS2. Nature Materials, 2008. 7(12): p. 960-965.
[23] Wang, Q.H., et al., Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology, 2012. 7(11): p. 699-712.
[24] Nagarajan, T., et al., Enhanced tribological properties of diesel-based engine oil through synergistic MoS2-graphene nanohybrid additive. Scientific Report, 2023. 13(1): p. 17424.
[25] Toh, R.J., et al., 3R phase of MoS2 and WS2 outperforms the corresponding 2H phase for hydrogen evolution. Chemical Communication, 2017. 53(21): p. 3054-3057.
[26] Ellis, J.K., M.J. Lucero, and G.E. Scuseria, The indirect to direct band gap transition in multilayered MoS2 as predicted by screened hybrid density functional theory. Applied Physics Letters, 2011. 99(26): p. 261908.
[27] Xu, X., et al., Growth of 2D Materials at the Wafer Scale. Advanced Materials, 2022. 34(14): p. e2108258.
[28] Li, L., et al., Epitaxy of wafer-scale single-crystal MoS2 monolayer via buffer layer control. Nature Communications, 2024. 15(1): p. 1825.
[29] Xia, Y., et al., 12-inch growth of uniform MoS2 monolayer for integrated circuit manufacture. Nature Materials, 2023. 22(11): p. 1324-1331.
[30] Hu, Z., et al., Energy transfer driven brightening of MoS2 by ultrafast polariton relaxation in microcavity MoS2/hBN/WS2 heterostructures. Nature Communications, 2024. 15(1): p. 1747.
[31] Muñoz, R., et al., Low T direct plasma assisted growth of graphene on sapphire and its integration in graphene/MoS2 heterostructure-based photodetectors. npj 2D Materials and Applications, 2023. 7(1): p. 57.
[32] Liu, C., et al., MoS2/graphene composites: Fabrication and electrochemical energy storage. Energy Storage Materials, 2020. 33: p. 470-502.
[33] Zhang, Y., et al., MoS2 and Fe2O3 co-modify g-C3N4 to improve the performance of photocatalytic hydrogen production. Scientific Reports, 2022. 12(1): p. 3261.
[34] Illarionov, Y.Y., et al., Process implications on the stability and reliability of 300 mm FAB MoS2 field-effect transistors. npj 2D Materials and Applications, 2024. 8(1): p. 8.
[35] Liu, L., et al., Ultrashort vertical-channel MoS2 transistor using a self-aligned contact. Nature Communications, 2024. 15(1): p. 165.
[36] Wu, F., et al., Vertical MoS2 transistors with sub-1-nm gate lengths. Nature, 2022. 603(7900): p. 259-264.
[37] Zhang, Y., et al., The Improvement of the Mechanical Exfoliation Method to Prepare Impurity-free Few-layer MoS2, in 2023 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO). 2023, IEEE: Chengdu, China. p. 477-481.
[38] Sahoo, D., et al., Cost effective liquid phase exfoliation of MoS2 nanosheets and photocatalytic activity for wastewater treatment enforced by visible light. Scientific Reports, 2020. 10(1): p. 10759.
[39] Kwack, Y.-J., T.T.T. Can, and W.-S. Choi, Bottom-up water-based solution synthesis for a large MoS2 atomic layer for thin-film transistor applications. npj 2D Materials and Applications, 2021. 5(1): p. 84.
[40] Tang, L., et al., Chemical Vapor Deposition Growth of Two-Dimensional Compound Materials: Controllability, Material Quality, and Growth Mechanism. Accounts of Materials Research, 2020. 2(1): p. 36-47.
[41] Aspiotis, N., et al., Large-area synthesis of high electrical performance MoS2 by a commercially scalable atomic layer deposition process. npj 2D Materials and Applications, 2023. 7(1): p. 18.
[42] Ono, R., et al., Improvement of MoS2 Film Quality by Solid-Phase Crystallization from PVD Amorphous MoSx Film, in 2023 7th IEEE Electron Devices Technology & Manufacturing Conference (EDTM). 2023, IEEE: Seoul, Korea, Republic of. p. 1-3.
[43] Fu, D., et al., Molecular Beam Epitaxy of Highly Crystalline Monolayer Molybdenum Disulfide on Hexagonal Boron Nitride. Journal of the American Chemical Society, 2017. 139(27): p. 9392-9400.
[44] Lu, X.-W., et al., Synthesis of uniform two-dimensional MoS2 films via thermal evaporation. Nano Research, 2024. 17(4): p. 3217-3223.
[45] Hirano, S., et al., Crystallinity improvement using migration-enhancement methods for sputtered-MoS2 films, in 2017 IEEE Electron Devices Technology and Manufacturing Conference (EDTM). 2017, IEEE: Toyama, Japan. p. 28-29.
[46] N. Goel, R.K. and M. Kumar, Scalable Growth of High-Quality MoS2 Film by Magnetron Sputtering Application for NO2 Gas Sensing, in 2019 IEEE 5th International Conference for Convergence in Technology (I2CT). 2019, IEEE: Bombay, India. p. 1-3.
[47] Dumcenco, D., et al., Large-Area Epitaxial Monolayer MoS2. ACS Nano. 9(4): p. 4611-4620.
[48] Bae, J. and Y. Yoo, A Novel Carbon-Assisted Chemical Vapor Deposition Growth of Large-Area Uniform Monolayer MoS2 and WS2. Nanomaterials (Basel), 2021. 11(9): p. 2423.
[49] Zhu, J., et al., Low-thermal-budget synthesis of monolayer molybdenum disulfide for silicon back-end-of-line integration on a 200 mm platform. Nature Nanotechnology, 2023. 18(5): p. 456-463.
[50] Lei, J., et al., Salt-Assisted MoS2 Growth: Molecular Mechanisms from the First Principles. Journal of American Chemical Society, 2022. 144(16): p. 7497-7503.
[51] Han, G.H., et al., Seeded growth of highly crystalline molybdenum disulphide monolayers at controlled locations. Nature Communications, 2015. 6: p. 6128.
[52] Patsha, A., V. Sheff, and A. Ismach, Seeded-growth of WS2 atomic layers: the effect on chemical and optical properties. Nanoscale, 2019. 11(46): p. 22493-22503.
[53] Li, Y., et al., Site-Specific Positioning and Patterning of MoS2 Monolayers: The Role of Au Seeding. ACS Nano, 2018. 12(9): p. 8970-8976.
[54] Najmaei, S., et al., Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nature Materials, 2013. 12(8): p. 754-759.
[55] Ding, D., et al., Spatially Controlled Nucleation of Single-Crystal Graphene on Cu Assisted by Stacked Ni. ACS Nano, 2016. 10(12): p. 11196-11204.
[56] Wang, F., et al., Two‐Dimensional Non‐Layered Materials: Synthesis, Properties and Applications. Advanced Functional Materials, 2016. 27(19): p. 1603254.
[57] Li, J., et al., General synthesis of two-dimensional van der Waals heterostructure arrays. Nature, 2020. 579(7799): p. 368-374.
[58] Liu, F., et al., Site-selective growth of two-dimensional materials: strategies and applications. Nanoscale, 2022. 14(28): p. 9946-9962.
[59] Kim, K.S., et al., Non-epitaxial single-crystal 2D material growth by geometric confinement. Nature, 2023. 614(7946): p. 88-94.
[60] Wang, J., et al., Twin Defect Derived Growth of Atomically Thin MoS2 Dendrites. ACS Nano, 2018. 12(1): p. 635-643.
[61] Feng, Q., et al., Chemical vapor deposition growth of sub-centimeter single crystal WSe2 monolayer by NaCl-assistant. Nanotechnology, 2019. 30(3): p. 034001.
[62] Shinde, S.M., et al., Stacking-controllable interlayer coupling and symmetric configuration of multilayered MoS2. NPG Asia Materials, 2018. 10(2): p. e468-e468.
[63] Ye, M., et al., Recent Advancement on the Optical Properties of Two-Dimensional Molybdenum Disulfide (MoS2) Thin Films. Photonics, 2015. 2(1): p. 288-307.
[64] Golovynskyi, S., et al., Exciton and trion in few-layer MoS2: Thickness- and temperature-dependent photoluminescence. Applied Surface Science, 2020. 515: p. 146033.
[65] Changgu Lee, H.Y., et al., Anomalous Lattice Vibrations of Single-and Few-Layer MoS2. ACS Nano, 2010. 4(5): p. 2695-2700.
[66] Li, Z., et al., Efficient strain modulation of 2D materials via polymer encapsulation. Nature Communications, 2020. 11(1): p. 1151.
[67] Chakraborty, B., et al., Symmetry-dependent phonon renormalization in monolayer MoS2 transistor. Physical Review B, 2012. 85(16): p. 161304.
[68] Li, H., et al., From Bulk to Monolayer MoS2: Evolution of Raman Scattering. Advanced Functional Materials, 2012. 22(7): p. 1385-1390.
[69] McCreary, K.M., et al., A- and B-exciton photoluminescence intensity ratio as a measure of sample quality for transition metal dichalcogenide monolayers. APL Materials, 2018. 6(11): p. 1-8.
[70] Thomas, A. and K.B. Jinesh, Excitons and Trions in MoS2 Quantum Dots: The Influence of the Dispersing Medium. ACS Omega, 2022. 7(8): p. 6531-6538.
[71] Mouri, S., Y. Miyauchi, and K. Matsuda, Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Letters, 2013. 13(12): p. 5944-5948.
[72] Xu, H., et al., Control of the Nucleation Density of Molybdenum Disulfide in Large-Scale Synthesis Using Chemical Vapor Deposition. Materials (Basel), 2018. 11(6): p. 870.
[73] Xu, W., et al., Large Dendritic Monolayer MoS2 Grown by Atmospheric Pressure Chemical Vapor Deposition for Electrocatalysis. ACS Applied Materials & Interfaces, 2018. 10(5): p. 4630-4639.
[74] Ullah, S., et al., Controllable p-type doping of 2D MoS2 via Sodium intercalation for optoelectronics. Journal of Materials Chemistry C, 2023. 11(9): p. 3386-3394.
[75] Yang, C., et al., Photoluminescence and X-Ray Excited Luminescence from Glutathione-Stabilized Gold Nanoparticles. Journal of biomedical nanotechnology, 2013. 9: p. 1827-1836.
指導教授 蘇清源(Ching-Yuan Su) 審核日期 2024-8-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明