博碩士論文 109356016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:18.222.161.119
姓名 陳敬峰  查詢紙本館藏   畢業系所 環境工程研究所在職專班
論文名稱 桌上型能量分散式X射線螢光光譜儀(ED XRF)分析製程廢液之銅、鎳濃度方法開發
(Method Development for Analyzing Copper and Nickel Concentrations in Process Waste Liquid Using a Benchtop Energy Dispersive X-ray Fluorescence Spectrometer (ED XRF))
相關論文
★ Advanced Wastewater Analysis: AI-Integrated Flow Injection Analysis (FIA) System for COD Online Monitoring★ 電混凝法應用於金屬表面處理廢水對於處理效率的影響
★ 聚乳酸塑膠在環境水體中的老化及重金屬吸附之探討★ 化學回收廢棄聚乳酸(PLA) 及製備聚氨酯材料
★ 錳改質牡蠣殼固定土壤中鎘和銅之研究★ 職業噪音暴露對人體健康影響研究-以玻璃纖維工廠為例
★ 反向電透析(RED)產電效能評估 -以濃度、流速、膜對數及流道厚度為操作參數★ 以反向電透析(RED)系統產電並去除氨氮
★ 比較電動堆高機語音式、間歇式、寬頻式警報裝置對作業場所工作者之安全效用探討,以C 造紙廠為例★ 煅燒條件對牡蠣殼抗菌能力之影響及抗菌物種- 單線態氧的檢測
★ 臺灣石門水庫及入庫河川表層水中微型塑膠時空分佈、組成與相關性調查★ Feasibility Study of Lanthanum-Modified Calcined Oyster Shells for Phosphorus Removal from Aquatic Environments
★ 氮改質煅燒牡蠣殼提升水中亞甲基藍染料 吸附和光催化降解之研究★ 桃園市三合一生質能中心提升一般廢棄物清除處理效能之研究
★ 耐熱型聚乳酸與非耐熱型聚乳酸塑膠回收再利用過程之特性研究★ 台灣石門水庫之表層、中層水與下游飲用水廠中微型塑膠之時空分佈、組成與相關性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-7-31以後開放)
摘要(中) 近年來,廢水偷排案件層出不窮,其中不乏含有銅、鎳等重金屬的廢水,導致環境嚴重污染,目前常見銅、鎳之檢測方法為感應耦合電漿光學發射光譜儀(ICP-OES)、或原子吸收光譜儀之檢測方式(AAS),分析過程不僅耗時耗能且產生大量實驗室廢液,如遇較高濃度之樣品時,容易造成儀器污染或使用高倍率稀釋導致數據偏差。
本研究探討X射線螢光光譜儀(XRF),是否具備液體重金屬之檢測分析能力,目前XRF主要分為能量散射式X射線螢光分析儀(Energy Dispersive X-Ray Fluorescence, ED-XRF)、及波長散射式X射線螢光分析儀(Wavelength Dispersive X-Ray Fluorescence, WD-XRF),常應用於土壤、結構性分析、及有害物質限用指令(The Restriction of the use of certain Hazardous Substances in electrical and electronic equipment, RoHS)等固體樣品之分析,如可應用於含重金屬液體樣品時,不僅可節省大量分析時間,且減少實驗成本與廢液之產生,更符合綠色化學之方針。
為評估ED-XRF對液態樣品中銅、鎳重金屬的分析能力,本研究選用穩定性高、檢測能力佳之桌上型ED-XRF設備,並收集多家光電業、半導體業、傳產業等實廠製程廢液,進行ED-XRF與ICP-OES之銅、鎳數據比較。
結果顯示,兩種設備顯示銅、鎳濃度皆具良好相關性(R2 > 0.9),樣品直接稀釋上機與經過酸消化(pH>5樣品)之數據表現也具有良好相關性(R2 > 0.9),然而,在酸消化過程中若產生沉澱或懸浮物,則易導致濃度低估。在ED-XRF分析秒數上,分別在60秒與120秒的分析時間下,銅、鎳分析結果皆有良好相關性(R2 > 0.9),即60秒可分析銅、鎳元素之含量。另外比較兩種設備之檢測成本、碳排放、廢液產生量與檢測效率,ED-XRF皆具有顯著優勢。
摘要(英) In recent years, incidents of illegal wastewater discharge have been frequent, often involving wastewater containing heavy metals such as copper and nickel, leading to severe environmental pollution. The commonly used methods for detecting copper and nickel are Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) and Atomic Absorption Spectroscopy (AAS). These analytical processes are not only time-consuming and energy-intensive but also generate substantial amounts of laboratory waste. Moreover, high-concentration samples can easily contaminate the instruments or require high dilution ratios, resulting in data inaccuracies.
This study investigates whether X-ray Fluorescence Spectrometry (XRF) can be utilized for the detection and analysis of heavy metals in liquid samples. Currently, XRF is primarily divided into Energy Dispersive X-Ray Fluorescence (ED-XRF) and Wavelength Dispersive X-Ray Fluorescence (WD-XRF). These methods are commonly applied to the analysis of solid samples such as soil, structural materials, and for compliance with the Restriction of Hazardous Substances Directive (RoHS). If applicable to liquid samples containing heavy metals, XRF could significantly reduce analysis time, lower experimental costs, and minimize the generation of waste, aligning well with the principles of green chemistry.
To evaluate the capability of ED-XRF in analyzing copper and nickel heavy metals in liquid samples, this study selected a highly stable and well-performing benchtop ED-XRF device. Wastewater samples from real industrial processes in the optoelectronics, semiconductor, and traditional manufacturing industries were collected. The copper and nickel data obtained from ED-XRF were compared with those from ICP-OES.
The results showed that both devices exhibited a strong correlation in copper and nickel concentrations (R² > 0.9). There was also a good correlation (R² > 0.9) between direct dilution samples and those subjected to acid digestion (for samples with pH > 5). However, precipitation or suspended particles formed during the acid digestion process could lead to an underestimation of concentrations. In terms of ED-XRF analysis time, both 60-second and 120-second analyses showed strong correlation (R² > 0.9) for copper and nickel, indicating that 60 seconds is sufficient to analyze the content of these elements. Additionally, when comparing the detection cost, carbon emissions, wastewater generation, and detection efficiency of the two devices, ED-XRF demonstrated significant advantages.
關鍵字(中) ★ 綠色化學
★ ED-XRF
★ ICP-OES
★ 重金屬製程廢液
★ 快篩
關鍵字(英) ★ Green Chemistry
★ Energy Dispersive X-Ray Fluorescence
★ Inductively Coupled Plasma Optical Emission Spectrometry
★ Heavy metal process wastewater
★ Rapid Screening
論文目次 摘要 i
Abstract ii
致謝 iv
圖目錄 vii
表目錄 viii
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 4
1.3 研究創新性 4
第二章 文獻回顧 5
2.1台灣廢水背景與特性說明 5
2.1.1台灣廢水管制標準整理 7
2.1.2銅 8
2.1.3鎳 9
2.2 X射線介紹 10
2.2.1 XRF介紹 12
2.2.2 ED-XRF 13
2.2.3 WD-XRF 15
2.3感應耦合電漿光學發射光譜法 19
2.4 樣品前處理方式 20
2.4.1 前處理加熱板方法 21
2.4.2 微波消化法 21
2.5 ICP-OES與ED-XRF分析比較 23
2.6綠色化學 24
第三章 研究方法 27
3.1 研究內容 27
3.2 樣品來源與分析規劃 28
3.3 實驗方法與材料 29
3.4儀器設備與器材 30
3.4.1感應耦合電漿放射光譜儀 31
3.4.2能量色散 X 射線螢光光譜儀 35
3.5 ICP-OES與ED-XRF檢量線建立之結果 40
3.5.1 ICP-OES 40
3.5.2 桌上型ED-XRF 41
3.6 統計方法應用 42
3.6.1 變異數分析 42
3.6.2 標準化 43
第四章 研究結果與討論 44
4.1 實廠樣品檢測結果 44
4.1.1 ED-XRF不同秒數下之銅、鎳數據整理 44
4.1.2 樣品稀釋直接上機分析 46
4.1.3 pH > 5 酸消化上機分析比較 49
4.2 檢測結果探討分析 50
4.2.1 ED-XRF不同秒數下之銅、鎳數據 50
4.2.3 pH > 5 酸消化上機分析比較 65
4.3 品管管控 74
4.4 分析成本分析 75
第五章 結論與建議 77
5.1 結論 77
5.2 建議 78
參考文獻 79
參考文獻 英文文獻
1. Anastas, P. T., & Warner, J. C. (2000). Green chemistry: Theory and practice. Oxford University Press.
https://doi.org/10.1093/oso/9780198506980.001.0001
2. American Society for Testing and Materials, & ASTM International. (2014). Standard Test Methods for Determination of Organic Chloride Content in Crude Oil. ASTM International. ASTM D4929.
3. Brouwer, P. (2003). Theory of XRF : getting acquainted with the principles. PANalytical.
4. Brewer, G. J. (2003). Copper in medicine. Current opinion in chemical biology, 7(2), 207-212.
https://doi.org/10.1016/S1367-5931(03)00018-8
5. Brady, D. C., Crowe, M. S., Greenberg, D. N., & Counter, C. M. (2017). Copper Chelation Inhibits BRAFV600E-Driven Melanomagenesis and Counters Resistance to BRAFV600E
and MEK1/2 Inhibitors. Cancer Research, 77(22), 6240-6252. https://doi.org/10.1158/0008-5472.CAN-16-1190
6. Berger, M., Yang, Q., & Maier, A. (2018). X-ray Imaging. In A. Maier, S. Steidl, V. Christlein, & J. Hornegger (Eds.), Medical Imaging Systems: An Introductory Guide (pp. 119-145). Springer International Publishing.
https://doi.org/10.1007/978-3-319-96520-8_7
7. Brangule, A., Bērtiņš, M., Vīksna, A., & Bandere, D. (2022). Potential of multivariate analyses of X-ray fluorescence spectra for characterisation of the microchemical
composition of plant materials. Agronomy Research, 20(1), 56-64. https://doi.org/10.15159/ar.21.161

8. Cherny, R. A., Atwood, C. S., Xilinas, M. E., Gray, D. N., Jones, W. D., McLean, C. A., Barnham, K. J., Volitakis, I., Fraser, F. W., Kim, Y., Huang, X., Goldstein, L. E., Moir, R. D., Lim, J. T., Beyreuther, K., Zheng, H., Tanzi, R. E., Masters, C. L., & Bush, A. I. (2001). Treatment with a Copper-Zinc Chelator Markedly and Rapidly Inhibits β-Amyloid Accumulation in Alzheimer′s Disease Transgenic Mice. Neuron, 30(3), 665-676. https://DOI:10.1016/S0896-6273(01)00317-8
9. Chen, Z. W., Gibson, W. M., & Huang, H. (2008). High Definition X-Ray Fluorescence:
Principles and Techniques. X-ray Optics and Instrumentation, 2008, 1-10. https://doi.org/10.1155/2008/318171
10. Caroline, S. C., Das, B., Pramana, S. S., & Batabyal, S. K. (2023). Nickel sulfide-nickel sulfoselenide nanosheets as a potential electrode material for high performance supercapacitor with extended shelf life. Journal of Energy Storage, 68, 107812. https://doi.org/10.1016/j.est.2023.107812
11. Daly, K., Croffie, M., Fenton, O., Fenelon, A., & Williams, P. N. (2021). Energy Dispersive XRF in Soil Analysis for the Agrifood Sector. X-ray Spectroscopy Methods & Applications for Today′s Spectroscopists, 36(11), 6-12.
12. Fisher, R. A. (1919). XV.-The Correlation between Relatives on the Supposition of Mendelian Inheritance. Transactions of the Royal Society of Edinburgh, 52(2), 399-433. https://doi:10.1017/S0080456800012163
13. Fisher, R. A. (1921). Studies in crop variation. I. An examination of the yield of dressed
grain from Broadbalk. The Journal of Agricultural Science, 11(2), 107-135. https://doi.org/10.1017/S0021859600003750
14. Farrell, M. J., Frey, K., & Mason, J. (2019). Corporate Responsibility: A Green Initiative to Reduce Chlorobenzene Based Chemistries in Semiconductor Processing. MRS Advances, 4(7), 393-398. https://DOI:10.1557/adv.2019.20

15. Fiamegos, Y., Dumitrascu, C., Ghidotti, M., & de la Calle Guntiñas, M. B. (2020). Use of energy-dispersive X-ray fluorescence combined with chemometric modelling to classify honey according to botanical variety and geographical origin. Analytical and Bioanalytical Chemistry, 412(2), 463-472. https://DOI:10.1007/s00216-019-02255-6
16. Gad, S. C. (2024). Nickel and nickel compounds. In P. Wexler (Ed.), Encyclopedia of Toxicology (Fourth Edition) (pp. 763-770). Academic Press.
https://doi.org/10.1016/B978-0-12-824315-2.00520-0
17. Herreros-Chavez, L., Cervera, M.L., & Morales-Rubio, Á. (2019). Direct determination by portable ED-XRF of mineral profile in cocoa powder samples. Food chemistry, 278, 373-379. https://DOI:10.1016/j.foodchem.2018.11.065
18. Hia, E. M., Jang, S. R., Maharjan, B., Park, J., Park, C. H., & Kim, C. S. (2024). Construction of a PEGDA/chitosan hydrogel incorporating mineralized copper-doped mesoporous silica nanospheres for accelerated bone regeneration. International journal of biological macromolecules, 262, 130218.
https://doi.org/10.1016/j.ijbiomac.2024.130218
19. Ida, H., & Kawai, J. (2005). An X-ray fluorescence spectrometer with a pyroelectric X-ray generator and a secondary target for the determination of Cr in steel. Spectrochimica Acta Part B: Atomic Spectroscopy, 60(1), 89-93.
https://doi.org/10.1016/j.sab.2004.11.003
20. International Electrotechnical Commission. (2008). IEC62321 111/95/CDV.
21. Lia, F., Zammit Mangion, M., & Farrugia, C. (2020). Application of Elemental Analysis via Energy Dispersive X-ray Fluorescence (ED-XRF) for the Authentication of Maltese
Extra Virgin Olive Oil. Agriculture, 10(3), 71. https://doi.org/10.3390/agriculture10030071


22. Lelièvre, C., Rouwane, A., Poirier, I., Bertrand, M., Gallon, R. K., & Murat, A. (2021). ED-XRF: a promising method for accurate and rapid quantification of metals in a bacterial
matrix. Environmental Technology, 42(28), 4466-4474.
https://doi.org/10.1080/09593330.2020.1763479
23. Phair, J. W. (2006). Green chemistry for sustainable cement production and use. Green Chemistry 8, 763-780. https://doi.org/10.1039/b603997a
24. Perrone, A., Finlayson, J. E., Bartelink, E. J., & Dalton, K. D. (2014). Chapter 7 - Application of Portable X-ray Fluorescence (XRF) for Sorting Commingled Human Remains. In B. J. Adams & J. E. Byrd (Eds.), Commingled Human Remains (pp. 145-165). Academic Press. https://doi.org/10.1016/B978-0-12-405889-7.00007-1
25. Robinson, J. W., Frame, E. M., & Frame, G. M. (2014). Undergraduate Instrumental Analysis. Undergraduate Instrumental Analysis (7th ed.), 540.
26. Robinson, J. W., Frame, E. M., & Frame, G. M. (2014). Undergraduate Instrumental Analysis. Undergraduate Instrumental Analysis (7th ed.), 541.
27. Rodríguez-Germade, I., Rubio, B., Rey, D., Vilas, F., López-Rodríguez, C., Comas, M.C., & Martínez-Ruiz, F. (2015). Optimization of Itrax Core Scanner Measurement Conditions for Sediments from Submarine Mud Volcanoes.
28. Swiatly-Blaszkiewicz, A., Pietkiewicz, D., Matysiak, J., Czech-Szczapa, B., Cichocka, K., & Kupcewicz, B. (2021). Rapid and Accurate Approach for Honeybee Pollen Analysis Using ED-XRF and FTIR Spectroscopy. Molecules, 26(19), 6024.
https://doi.org/10.3390/molecules26196024

中文文獻
1. 中華職業醫學會 (2021)。砷、銅、錫與其他金屬農藥引起之中毒及其續發症參考指引。
2. 石偉成 (2005)。河川及其出海口海域毒性污染物分佈與牡蠣生物累積關係之研究。元智大學,桃園市。
3. 行政院環境保護署 (2023)。2023年事業廢棄物申報量統計報告。
4. 全國環境水質監測資訊網 (2020)。 https://wq.moenv.gov.tw/EWQP/zh/Encyclopedia/NounDefinition/Pedia_36.aspx
5. 余海峯 (2017)。物理雙月刊. 1901年諾貝爾物理獎:為什麼 X 射線不叫倫琴射線?。
https://pansci.asia/archives/112025
6. 邱明浩 (2008)。灌溉水質對農地重金屬污染及水稻重金屬含量之影響。朝陽科技大學,台中市。
7. 林賢宗 (2015)。攜帶式X-ray螢光偵測器應用於不同土壤污染類型場址重金屬篩測之適用性研究。崑山科技大學,台南市。
8. 吳君薇 (2011)。電化學機械研磨金屬銅與其電化學特性的研究。國立臺灣大學,台北市。
9. 俞姿宇 (2016)。波長色散型X射線螢光光譜儀。
10. 高建平 (n.d.)。Avio 200 ICP-OES 测定磷酸中的金屬元素。
11. 國家環境研究院 (2016)。水中銀、鎘、鉻、銅、鐵、錳、鎳、鉛及鋅檢測方法-火焰式原子吸收光譜法(NIEA W306.55A)。
12. 國家環境研究院 (2019)。水中金屬及微量元素檢測方法-感應耦合電漿質譜法(NIEA W313.54B)。
13. 國家環境研究院 (2019)。水中金屬及微量元素檢測方法-感應耦合電漿原子發射光譜法(NIEA W311.54C)。
14. 國家環境研究院 (2013)。水中元素萃取消化法-微波輔助酸消化法(NIEA W312.51C)。
15. 國家環境研究院 (2005)。土壤和底泥中元素濃度快速篩選方法-攜帶式X-射線螢光光譜儀分析法(NIEA S322.60C)。
16. 國家環境研究院 (2022)。毒性及關注化學物質中鉻酸鹽及重鉻酸鹽類檢測方法(NIEA T305.11B)。
17. 國家環境研究院 (2022)。石油產品硫含量檢測方法-能量分散式 X 射線螢光光譜法(NIEA A443.75C)。
18. 國家環境研究院 (2017)。環境檢驗方法偵測極限測定指引(NIEA-PA107)。
19. 勞動部職業安全衛生署 (2021)。職業暴露鎳及其化合物引起之疾病認定參考指引。
20. 陳靖惠 (2017)。封裝用導線市場現況及發展趨勢。
21. 陳雨筑、呂學隆 (2021)。鋰離子電池技術趨勢發展方向。
22. 經濟部 (2021)。金融海嘯以來,金屬製品業主要營運指標優於整體製造業。本部新聞。https://www.moea.gov.tw/Mns/populace/news/News.aspx?kind=1&menu_id=40&news_id=93918
23. 楊仁康、王娟、尹红軍、姚繼軍 (n.d.)。Avio 200 ICP-OES 测定海水中氯的含量。
24. 彰化縣政府 (2019)。智慧科技查緝環境污染‧環檢警攜手偵破廢棄物案。https://www2.chcg.gov.tw/main/main_act/main.asp?main_id=34940&act_id=408
25. 劉素惠 (2008)。國內電子零組件限用有害物質(RoHS)以XRF檢測分析之研究。嘉南藥理科技大學,台南市。
26. 蔡明谷 (2006)。研究電透析技術處理重金屬廢水之效率及其物化機制-以含銅廢水為例。朝陽科技大學,台中市。
27. 環境部法規查詢系統 (2018)。放流水標準。https://oaout.moenv.gov.tw/law/LawContent.aspx?id=FL015489&kw=%e6%94%be%e6%b5%81%e6%b0%b4

28. 環境部化學物質管理署 (2023)。放流水標準。 https://topic.moenv.gov.tw/greenchem/cp-302-8060-e6081-1.html
29. 蕭寶桂、吳春生、劉怡焜、謝燕儒 (2017)。我國化學物質管理與綠色化學之推動鏈結。
https://proj.ftis.org.tw/eta/WebPhotos/2020/%E6%88%91%E5%9C%8B%E5%8C%96%E5%AD%B8%E7%89%A9%E8%B3%AA%E7%AE%A1%E7%90%86%E8%88%87%E7%B6%A0%E8%89%B2%E5%8C%96%E5%AD%B8%E4%B9%8B%E6%8E%A8%E5%8B%95%E9%8F%88%E7%B5%90.pdf
指導教授 林伯勳 審核日期 2024-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明