博碩士論文 110326016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:62 、訪客IP:3.147.103.106
姓名 黃滄偉(Tsang-Wei Huang)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 2021 年高山與都市有機氣膠的特徵與形成途徑
(The characteristics and formation of organic aerosols in mountainous regions and urban areas in 2021.)
相關論文
★ 台灣北部地區大氣氣膠有機酸特性★ 北部氣膠超級測站近七年氣膠特性變化探討
★ 鹿林山背景大氣及受生質燃燒事件影響的氣膠化學特性★ 鹿林山大氣氣膠含水量探討及乾氣膠光學特性
★ 中南半島近污染源生質燃燒氣膠特性及其傳輸演化與東沙島氣膠特性★ 鹿林山大氣背景站不同氣團氣膠光學特性
★ 台灣細懸浮微粒(PM2.5)空氣品質標準建置研究★ 台灣都市地區細懸浮微粒(PM2.5)手動採樣分析探討
★ 2011年不同來源氣團鹿林山氣膠水溶性無機離子動態變化★ 台灣都會區細懸浮微粒(PM2.5)濃度變化影響因子、污染來源及其對大氣能見度影響
★ 2012年越南山羅高地生質燃燒期間氣膠特性及2003-2012年台灣鹿林山氣膠來源解析★ 2011年生質燃燒期間越南山羅高地和台灣鹿林山氣膠特性
★ 2013年7SEAS國際觀測對北越南山羅生質燃燒期間氣膠化學特性及來源鑑定★ 中南半島近生質燃燒源區與傳輸下風鹿林山氣膠特性及來源解析
★ 台灣北、中′南部細懸浮微粒(PM2.5)儀器比對成分分析與來源推估★ 2013年春季鹿林山和夏季龍潭氣膠水溶性離子短時間動態變化特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 有機氣膠對大氣輻射、氣候變化、人體健康有重大影響。本文於2021年春、秋季在鹿林山大氣背景觀測站(海拔2,862 m)採集氣膠,比較鹿林山生質燃燒傳輸煙流和大氣背景氣膠水可溶有機碳(Water-Soluble Organic Carbon, WSOC)、類腐植質物質(HUmic-LIke Substances, HULIS)、二元酸及其鹽類(Dicarboxylic acids and their salts, DCAs C2-C5)、單醣脫水醣類氣膠特性。本文另於 2021年12月在臺中市採樣,比較高山和都市地區氣膠微量有機成分異同。
鹿林山春季及臺中市採樣期間氣膠微量有機成分以WSOC為主,各占PM2.5有機碳濃度70 ± 20% 和57 ± 30%,其次為HULIS,鹿林山春季平均濃度都高於臺中市。由生質燃燒指標成分比值推論:2021年鹿林山長程傳輸生質氣膠的燃燒狀態以明火為主,燃燒硬木數量多於軟木。鹿林山春季及臺中市採樣期間DCAs以C2為主,臺中市觀測期間C3/C4比值高於鹿林山,但受光化學影響都不大。鹿林山及臺中市於採樣期間生質燃燒指標左旋葡聚糖在總醣占比PM2.5較PM2.5-10高,生物氣膠指標葡萄糖則相反,顯示生質燃燒氣膠粒徑較小,生物氣膠則較大。為了較周延地瞭解鹿林山有機氣膠污染源貢獻,本文彙整2019-2021年鹿林山相關數據,使用正矩陣因子法受體模式推估春季鹿林山PM10有機氣膠污染源貢獻,分別為生質燃燒 32.5%、生物來源 30.1%、原生排放與光化學反應23.6 %、海鹽12.8%。
總結來說,鹿林山受生質燃燒煙團長程傳輸影響時,微量有機氣膠濃度高於臺中市,來源以生質燃燒為主,生物源貢獻相近;臺中市微量有機氣膠來源則以交通源為主,生質燃燒為次。
摘要(英) Aerosol organic components have significant impacts on atmospheric radiation, climate change, and human health. In this study, aerosols were collected during the spring and autumn of 2021 at the Lulin Atmospheric Background Station (elevation 2,862 m a.s.l.). The study compares the characteristics of water-soluble organic carbon (WSOC), humic-like substances (HULIS), dicarboxylic acids and their salts (DCAs C2-C5), and anhydrosugar aerosols in the transported biomass burning (BB) plumes and atmospheric background aerosols at Lulin Mountain. This study also conducted sampling in Taichung City in December 2021 to compare the differences in aerosol trace organic components between mountainous and urban areas.
During the sampling periods in the spring season at Lulin Mountain and in Taichung City, the primary aerosol trace organic component was WSOC, accounting for 70 ± 20% and 57 ± 30% of the organic carbon concentration in PM2.5, respectively. The next most abundant component was HULIS, with the average concentration at Lulin Mountain in the spring being higher than that in Taichung City. Based on the ratios of BB marker components, it is inferred that the BB aerosols transported over long distances to Lulin Mountain in 2021 were primarily from open burning, with a higher quantity of hardwood being burned compared to softwood. During the sampling periods in the spring at Lulin Mountain and in Taichung City, DCAs were primarily composed of C2. The C3/C4 ratio observed in Taichung City was higher than that at Lulin Mountain, but both locations showed minimal influence from photochemical effects. The BB marker, levoglucosan, accounted for a higher proportion of PM2.5 than PM10-2.5 during the sampling periods at both Lulin Mountain and Taichung City. In contrast, the bioaerosol marker, glucose, showed the opposite trend, indicating that BB aerosols are smaller in size, while bioaerosol is larger. To gain a more comprehensive understanding of the sources contributing to organic aerosol at Lulin Mountain, this study compiled relevant data from 2019 to 2021. Using the Positive Matrix Factorization (PMF) receptor model, the contributions to PM10 organic aerosol pollution at Lulin Mountain in the spring were estimated to be: BB 32.5%, biological sources 30.1%, primary emissions and photochemical reactions 23.6%, and sea salt 12.8%.
In summary, when Lulin Mountain is affected by long-range transported BB plumes, the concentration of trace organic aerosols is higher than in Taichung City, with BB being the primary source and biological contributions being similar. In Taichung City, the primary source of trace organic aerosols is traffic emissions, followed by BB.
關鍵字(中) ★ 高山氣膠
★ 都市氣膠
★ 氣膠有機成分
★ 生質燃燒氣膠
關鍵字(英) ★ Mountain Aerosols
★ Urban Aerosols
★ Aerosol Organic Components
★ Biomass Burning Aerosols
論文目次 摘要 II
Abstract III
目錄 VI
圖目錄 IX
表目錄 XI
一、 前言 1
1.1 研究緣起 1
1.2研究目的 2
二、 文獻回顧 3
2.1生質燃燒與傳輸 3
2.1.1 東南亞生質燃燒 3
2.1.2 氣膠長程傳輸 4
2.2 微量有機氣膠成分 5
2.2.1 水可溶有機碳(WSOC) 5
2.2.2 類腐植質(HULIS- HUmic-LIke Substances) 5
2.2.3 二元酸及其鹽類 8
2.2.4 單醣脫水醣類 9
2.3氣膠其他特性 11
2.3.1雲凝結核(Cloud Condensation Nuclei, CCN) 11
2.3.2氣膠光學特性 12
2.3.3氣膠光化學反應 12
三、 研究方法 14
3.1研究概述 14
3.2採樣地點 16
3.2.1鹿林空氣品質背景站 16
3.2.1臺中市採樣點(環保局) 17
3.3採樣觀測儀器 18
3.3.1 R&P Model 3500自組式蜂巢式套管化學採樣器 18
3.3.2 高量採樣器 21
3.4濾紙前處理、運輸及保存程序 22
3.4.1 濾紙前處理 22
3.4.2 樣本運送與保存 23
3.5樣本分析方法 24
3.5.1 樣本質量濃度秤量 24
3.5.2 氣膠碳成分分析 24
3.5.3氣膠類腐植質(HULIS- HUmic-LIke Substances)分析 25
3.5.4氣膠二元酸及其鹽類分析 27
3.5.5 氣膠水可溶有機碳分析 27
3.5.6氣膠單醣脫水醣類分析 28
3.6 BB判別方法 30
3.6.1氣流軌跡模式(NOAA HYSPLIT) 30
3.6.2美國太空總署(NASA)自然災害網 30
3.6.3美國太空總署全球火災監測中心(GFMC) 31
3.7正矩陣因子法(Positive Matrix Factorization, PMF) 32
3.8環境部測站自動監測儀器 34
3.8.1 O3、NOx氣體濃度 34
3.8.2 氣象參數 34
四、 結果與討論 36
4.1 2021年春、秋季鹿林山和12月臺中市有機化學成分與鹿林山氣流軌跡分類 36
4.1.1 2021年春、秋季鹿林山和12月臺中市有機氣膠化學成分濃度 36
4.1.2 2021年春、秋季鹿林山氣流軌跡來源類型 42
4.2 2019到2021年鹿林山氣流軌跡類型氣膠有機成分變化及特徵 48
4.2.1鹿林山春季氣流軌跡類型氣膠有機成分濃度及特徵比值 50
4.2.2逆推氣流軌跡類型與微量有機成分相關性 65
4.3 2019到2021年春季鹿林山有機氣膠來源貢獻 69
4.4 2021年冬季臺中市PM2.5及有機碳成分影響因子 76
4.5 2021年都市和高山高濃度及一般狀況的微量有機氣膠濃度、特徵、貢獻來源 94
五、 結論 100
5.1結論 100
六、 參考文獻 102
七、 附錄 116
附錄1微量有機成分偵測極限 116
附錄2鹿林山2021年春季採樣期間氣流軌跡類型 119
附錄3鹿林山2021年秋季採樣期間氣流軌跡類型 145
附錄4鹿林山2021年春季採樣期間火點 153
附錄5鹿林山2021年春季微量有機元素相關性矩陣 155
附錄6鹿林山2021年春季微量有機元素PMF 158
附錄7口試委員意見回覆 160
參考文獻 Adam, M. G., Tran, P. T. M., Bolan, N. andBalasubramanian, R. (2021). Biomass burning-derived airborne particulate matter in Southeast Asia: A critical review. Journal of Hazardous Materials, 407, 124760. https://doi.org/https://doi.org/10.1016/j.jhazmat.2020.124760
Aggarwal, S. G. andKawamura, K. (2009). Carbonaceous and inorganic composition in long-range transported aerosols over northern Japan: Implication for aging of water-soluble organic fraction. Atmospheric Environment, 43(16), 2532-2540.
Alves, C. A., Vicente, A. M. P., Calvo, A. I., Baumgardner, D., Amato, F., Querol, X., Pio, C. andGustafsson, M. (2020). Physical and chemical properties of non-exhaust particles generated from wear between pavements and tyres. Atmospheric Environment, 224, 117252. https://doi.org/https://doi.org/10.1016/j.atmosenv.2019.117252
Andreae, M. O. (2013). The aerosol nucleation puzzle. science, 339(6122), 911-912.
Andreae, M. O. andCrutzen, P. J. (1997). Atmospheric aerosols: Biogeochemical sources and role in atmospheric chemistry. science, 276(5315), 1052-1058.
Armentia, A., Martín-Armentia, S., Moral, A., Montejo, D., Martin-Armentia, B., Sastre, R., Fernández, S., Corell, A. andFernandez, D. (2019). Molecular study of hypersensitivity to spores in adults and children from Castile & Leon. Allergologia et immunopathologia, 47(4), 350-356.
Asa-Awuku, A., Sullivan, A., Hennigan, C., Weber, R. andNenes, A. (2008). Investigation of molar volume and surfactant characteristics of water-soluble organic compounds in biomass burning aerosol. Atmospheric chemistry and physics, 8(4), 799-812.
Baduel, C., Voisin, D. andJaffrezo, J.-L. (2009). Comparison of analytical methods for Humic Like Substances (HULIS) measurements in atmospheric particles. Atmospheric chemistry and physics, 9(16), 5949-5962.
Baduel, C., Voisin, D. andJaffrezo, J.-L. (2010). Seasonal variations of concentrations and optical properties of water soluble HULIS collected in urban environments. Atmospheric chemistry and physics, 10(9), 4085-4095.
Beerling, D. J. andOsborne, C. P. (2006). The origin of the savanna biome. Global change biology, 12(11), 2023-2031.
Bhardwaj, P., Naja, M., Kumar, R. andChandola, H. (2016). Seasonal, interannual, and long-term variabilities in biomass burning activity over South Asia. Environmental Science and Pollution Research, 23(5), 4397-4410.
Bigler, M., Röthlisberger, R., Lambert, F., Stocker, T. F. andWagenbach, D. (2006). Aerosol deposited in East Antarctica over the last glacial cycle: Detailed apportionment of continental and sea‐salt contributions. Journal of Geophysical Research: Atmospheres, 111(D8).
Bikkina, P., Bikkina, S. andKawamura, K. (2022). Tracing the biomass burning emissions over the Arabian Sea in winter season: Implications from the molecular distributions and relative abundances of sugar compounds. Science of the Total Environment, 848, 157643. https://doi.org/https://doi.org/10.1016/j.scitotenv.2022.157643
Bikkina, S., Kawamura, K. andMiyazaki, Y. (2015). Latitudinal distributions of atmospheric dicarboxylic acids, oxocarboxylic acids, and α‐dicarbonyls over the western North Pacific: Sources and formation pathways. Journal of Geophysical Research: Atmospheres, 120(10), 5010-5035.
Blando, J. D. andTurpin, B. J. (2000). Secondary organic aerosol formation in cloud and fog droplets: a literature evaluation of plausibility. Atmospheric Environment, 34(10), 1623-1632.
Bougiatioti, A., Zarmpas, P., Koulouri, E., Antoniou, M., Theodosi, C., Kouvarakis, G., Saarikoski, S., Mäkelä, T., Hillamo, R. andMihalopoulos, N. (2013). Organic, elemental and water-soluble organic carbon in size segregated aerosols, in the marine boundary layer of the Eastern Mediterranean. Atmospheric Environment, 64, 251-262.
Boule, P. andBahnemann, D. (1999). Environmental photochemistry (Vol. 2). Springer Science & Business Media.
Brauer, M. (2016). The global burden of disease from air pollution. 2016 AAAS Annual Meeting (February 11-15, 2016),
Brown, S. G., Eberly, S., Paatero, P. andNorris, G. A. (2015). Methods for estimating uncertainty in PMF solutions: Examples with ambient air and water quality data and guidance on reporting PMF results. Science of the Total Environment, 518, 626-635.
Cao, F., Zhang, S.-C., Kawamura, K., Liu, X., Yang, C., Xu, Z., Fan, M., Zhang, W., Bao, M. andChang, Y. (2017). Chemical characteristics of dicarboxylic acids and related organic compounds in PM2. 5 during biomass-burning and non-biomass-burning seasons at a rural site of Northeast China. Environmental Pollution, 231, 654-662.
Čapka, L., Mikuška, P. andKřůmal, K. (2020). Determination of dicarboxylic acids in atmospheric aerosols using continuous aerosol sampler with on-line connected ion chromatography system. Atmospheric Environment, 222, 117178.
Chen, L., Li, Q., Wu, D., Sun, H., Wei, Y., Ding, X., Chen, H., Cheng, T. andChen, J. (2019). Size distribution and chemical composition of primary particles emitted during open biomass burning processes: Impacts on cloud condensation nuclei activation. Science of the Total Environment, 674, 179-188. https://doi.org/https://doi.org/10.1016/j.scitotenv.2019.03.419
Chen, N., You, J., Huang, J., Yang, Y., Lin, H., Qi, X., Chen, X., Yang, Y. andHu, B. (2023). Secondary organic aerosols in PM2.5 on a coastal island in southeastern China: Impact of atmospheric process and biomass burning. Atmospheric Environment, 306, 119841. https://doi.org/https://doi.org/10.1016/j.atmosenv.2023.119841
Chi, K. H., Lin, C.-Y., Yang, C.-F. O., Wang, J.-L., Lin, N.-H., Sheu, G.-R. andLee, C.-T. (2010). PCDD/F measurement at a high-altitude station in Central Taiwan: evaluation of long-range transport of PCDD/Fs during the Southeast Asia biomass burning event. Environmental science & technology, 44(8), 2954-2960.
Christopher, S. A., Kliche, D. V., Chou, J. andWelch, R. M. (1996). First estimates of the radiative forcing of aerosols generated from biomass burning using satellite data. Journal of Geophysical Research: Atmospheres, 101(D16), 21265-21273.
Chuang, M.-T., Lee, C.-T., Chou, C. C.-K., Engling, G., Chang, S.-Y., Chang, S.-C., Sheu, G.-R., Lin, N.-H., Sopajaree, K. andChang, Y.-J. (2016). Aerosol transport from Chiang Mai, Thailand to Mt. Lulin, Taiwan–Implication of aerosol aging during long-range transport. Atmospheric Environment, 137, 101-112.
Cohen, R. C. andMurphy, J. G. (2003). Photochemistry of NO2 in Earth′s stratosphere: constraints from observations. Chemical reviews, 103(12), 4985-4998.
Coyle, J. D. (1991). Introduction to organic photochemistry. John Wiley & Sons.
Crutzen, P. J. andAndreae, M. O. (1990). Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles. science, 250(4988), 1669-1678.
Decesari, S., Fuzzi, S., Facchini, M., Mircea, M., Emblico, L., Cavalli, F., Maenhaut, W., Chi, X., Schkolnik, G. andFalkovich, A. (2006). Characterization of the organic composition of aerosols from Rondônia, Brazil, during the LBA-SMOCC 2002 experiment and its representation through model compounds. Atmospheric chemistry and physics, 6(2), 375-402.
Deshmukh, D. K., Haque, M. M., Kawamura, K. andKim, Y. (2018). Dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls in fine aerosols over central Alaska: implications for sources and atmospheric processes. Atmospheric Research, 202, 128-139.
Dhandapani, S. andEvers, S. (2020). Oil palm ‘slash-and-burn’ practice increases post-fire greenhouse gas emissions and nutrient concentrations in burnt regions of an agricultural tropical peatland. Science of the Total Environment, 742, 140648. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.140648
Diallo, M. S., Simpson, A., Gassman, P., Faulon, J. L., Johnson, J. H., Goddard, W. A. andHatcher, P. G. (2003). 3-D structural modeling of humic acids through experimental characterization, computer assisted structure elucidation and atomistic simulations. 1. Chelsea soil humic acid. Environmental science & technology, 37(9), 1783-1793.
Duc, H. N., Bang, H. Q. andQuang, N. X. (2016). Modelling and prediction of air pollutant transport during the 2014 biomass burning and forest fires in peninsular Southeast Asia. Environmental monitoring and assessment, 188, 1-23.
Dusek, U., Hitzenberger, R., Kasper-Giebl, A., Kistler, M., Meijer, H. A., Szidat, S., Wacker, L., Holzinger, R. andRöckmann, T. (2017). Sources and formation mechanisms of carbonaceous aerosol at a regional background site in the Netherlands: insights from a year-long radiocarbon study. Atmospheric chemistry and physics, 17(5), 3233-3251.
Dutton, M. V. andEvans, C. S. (1996). Oxalate production by fungi: its role in pathogenicity and ecology in the soil environment. Canadian journal of microbiology, 42(9), 881-895.
Emygdio, A. P. M., de Fátima Andrade, M., Gonçalves, F. L. T., Engling, G., de Souza Zanetti, R. H. andKumar, P. (2018). Biomarkers as indicators of fungal biomass in the atmosphere of São Paulo, Brazil. Science of the Total Environment, 612, 809-821.
Engling, G., Lee, J. J., Tsai, Y.-W., Lung, S.-C. C., Chou, C. C.-K. andChan, C.-Y. (2009). Size-resolved anhydrosugar composition in smoke aerosol from controlled field burning of rice straw. Aerosol Science and Technology, 43(7), 662-672.
Fine, P. M., Cass, G. R. andSimoneit, B. R. (2004). Chemical characterization of fine particle emissions from the fireplace combustion of wood types grown in the Midwestern and Western United States. Environmental Engineering Science, 21(3), 387-409.
Fourtziou, L., Liakakou, E., Stavroulas, I., Theodosi, C., Zarmpas, P., Psiloglou, B., Sciare, J., Maggos, T., Bairachtari, K. andBougiatioti, A. (2017). Multi-tracer approach to characterize domestic wood burning in Athens (Greece) during wintertime. Atmospheric Environment, 148, 89-101.
Gao, S., Hegg, D. A., Hobbs, P. V., Kirchstetter, T. W., Magi, B. I. andSadilek, M. (2003). Water‐soluble organic components in aerosols associated with savanna fires in southern Africa: Identification, evolution, and distribution. Journal of Geophysical Research: Atmospheres, 108(D13).
Gao, S., Keywood, M., Ng, N. L., Surratt, J., Varutbangkul, V., Bahreini, R., Flagan, R. C. andSeinfeld, J. H. (2004). Low-molecular-weight and oligomeric components in secondary organic aerosol from the ozonolysis of cycloalkenes and α-pinene. The Journal of Physical Chemistry A, 108(46), 10147-10164.
Gautam, R., Hsu, N. C., Eck, T. F., Holben, B. N., Janjai, S., Jantarach, T., Tsay, S.-C. andLau, W. K. (2013). Characterization of aerosols over the Indochina peninsula from satellite-surface observations during biomass burning pre-monsoon season. Atmospheric Environment, 78, 51-59.
Graber, E. andRudich, Y. (2006). Atmospheric HULIS: How humic-like are they? A comprehensive and critical review. Atmospheric chemistry and physics, 6(3), 729-753.
Gysel, M., Weingartner, E., Nyeki, S., Paulsen, D., Baltensperger, U., Galambos, I. andKiss, G. (2004). Hygroscopic properties of water-soluble matter and humic-like organics in atmospheric fine aerosol. Atmospheric chemistry and physics, 4(1), 35-50.
Haque, M. M., Verma, S. K., Deshmukh, D. K., Kunwar, B., Miyazaki, Y. andKawamura, K. (2021). Seasonal and temporal variations of ambient aerosols in a deciduous broadleaf forest from northern Japan: Contributions of biomass burning and biological particles. Chemosphere, 279, 130540.
Havers, N., Burba, P., Lambert, J. andKlockow, D. (1998a). Spectroscopic characterization of humic-like substances in airborne particulate matter. Journal of Atmospheric Chemistry, 29(1), 45-54.
Havers, N., Burba, P., Lambert, J. andKlockow, D. (1998b). Spectroscopic characterization of humic-like substances in airborne particulate matter. Journal of Atmospheric Chemistry, 29, 45-54.
Haywood, J. andBoucher, O. (2000). Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review. Reviews of geophysics, 38(4), 513-543.
Ho, K., Lee, S., Cao, J., Li, Y. S., Chow, J. C., Watson, J. G. andFung, K. (2006). Variability of organic and elemental carbon, water soluble organic carbon, and isotopes in Hong Kong. Atmospheric chemistry and physics, 6(12), 4569-4576.
Hoffer, A., Gelencsér, A., Guyon, P., Kiss, G., Schmid, O., Frank, G., Artaxo, P. andAndreae, M. (2006). Optical properties of humic-like substances (HULIS) in biomass-burning aerosols. Atmospheric chemistry and physics, 6(11), 3563-3570.
Hoffer, A., Kiss, G., Blazso, M. andGelencsér, A. (2004). Chemical characterization of humic‐like substances (HULIS) formed from a lignin‐type precursor in model cloud water. Geophysical Research Letters, 31(6).
Hsu, C.-L., Cheng, C.-Y., Lee, C.-T. andDing, W.-H. (2007). Derivatization procedures and determination of levoglucosan and related monosaccharide anhydrides in atmospheric aerosols by gas chromatography–mass spectrometry. Talanta, 72(1), 199-205. https://doi.org/https://doi.org/10.1016/j.talanta.2006.10.018
Huang, X. F., Yu, J. Z., He, L. Y. andYuan, Z. (2006). Water‐soluble organic carbon and oxalate in aerosols at a coastal urban site in China: Size distribution characteristics, sources, and formation mechanisms. Journal of Geophysical Research: Atmospheres, 111(D22).
Ikemori, F., Uranishi, K., Sato, T., Fujihara, M., Hasegawa, H. andSugata, S. (2021). Time-resolved characterization of organic compounds in PM2. 5 collected at Oki Island, Japan, affected by transboundary pollution of biomass and non-biomass burning from Northeast China. Science of The Total Environment, 750, 142183.
Kaneyasu, N., Igarashi, Y., Sawa, Y., Takahashi, H., Takada, H., Kumata, H. andHoeller, R. (2007). Chemical and optical properties of 2003 Siberian forest fire smoke observed at the summit of Mt. Fuji, Japan. Journal of Geophysical Research: Atmospheres, 112(D13).
Kaskaoutis, D., Grivas, G., Oikonomou, K., Tavernaraki, P., Papoutsidaki, K., Tsagkaraki, M., Stavroulas, I., Zarmpas, P., Paraskevopoulou, D. andBougiatioti, A. (2022). Impacts of severe residential wood burning on atmospheric processing, water-soluble organic aerosol and light absorption, in an inland city of Southeastern Europe. Atmospheric Environment, 280, 119139.
Kaskaoutis, D. G., Grivas, G., Oikonomou, K., Tavernaraki, P., Papoutsidaki, K., Tsagkaraki, M., Stavroulas, I., Zarmpas, P., Paraskevopoulou, D., Bougiatioti, A., Liakakou, E., Gavrouzou, M., Dumka, U. C., Hatzianastassiou, N., Sciare, J., Gerasopoulos, E. andMihalopoulos, N. (2022). Impacts of severe residential wood burning on atmospheric processing, water-soluble organic aerosol and light absorption, in an inland city of Southeastern Europe. Atmospheric Environment, 280, 119139. https://doi.org/https://doi.org/10.1016/j.atmosenv.2022.119139
Kaspari, S., Dixon, D., Sneed, S. andHandley, M. (2005). Sources and transport pathways of marine aerosol species into West Antarctica. Annals of Glaciology, 41, 1-9.
Kawamura, K. andKaplan, I. R. (1987). Motor exhaust emissions as a primary source for dicarboxylic acids in Los Angeles ambient air. Environmental science & technology, 21(1), 105-110.
Kawamura, K. andSakaguchi, F. (1999). Molecular distributions of water soluble dicarboxylic acids in marine aerosols over the Pacific Ocean including tropics. Journal of Geophysical Research: Atmospheres, 104(D3), 3501-3509.
Kawamura, K. andUsukura, K. (1993). Distributions of low molecular weight dicarboxylic acids in the North Pacific aerosol samples. Journal of Oceanography, 49(3), 271-283.
Kerminen, V.-M., Chen, X., Vakkari, V., Petäjä, T., Kulmala, M. andBianchi, F. (2018). Atmospheric new particle formation and growth: review of field observations. Environmental Research Letters, 13(10), 103003.
Kiss, G., Tombácz, E. andHansson, H.-C. (2005). Surface tension effects of humic-like substances in the aqueous extract of tropospheric fine aerosol. Journal of Atmospheric Chemistry, 50, 279-294.
Kristensen, T. B., Wex, H., Nekat, B., Nøjgaard, J. K., van Pinxteren, D., Lowenthal, D. H., Mazzoleni, L. R., Dieckmann, K., Bender Koch, C. andMentel, T. F. (2012). Hygroscopic growth and CCN activity of HULIS from different environments. Journal of Geophysical Research: Atmospheres, 117(D22).
Krivácsy, Z., Gelencsér, A., Kiss, G., Mészáros, E., Molnár, Á., Hoffer, A., Mészáros, T., Sárvári, Z., Temesi, D. andVarga, B. (2001). Study on the chemical character of water soluble organic compounds in fine atmospheric aerosol at the Jungfraujoch. Journal of Atmospheric Chemistry, 39, 235-259.
Kuang, B. Y., Lin, P., Huang, X. andYu, J. Z. (2015). Sources of humic-like substances in the Pearl River Delta, China: positive matrix factorization analysis of PM 2.5 major components and source markers. Atmospheric chemistry and physics, 15(4), 1995-2008.
Kulmala, M., Kontkanen, J., Junninen, H., Lehtipalo, K., Manninen, H. E., Nieminen, T., Petäjä, T., Sipilä, M., Schobesberger, S. andRantala, P. (2013). Direct observations of atmospheric aerosol nucleation. science, 339(6122), 943-946.
Kulmala, M., Petäjä, T., Ehn, M., Thornton, J., Sipilä, M., Worsnop, D. andKerminen, V.-M. (2014). Chemistry of atmospheric nucleation: on the recent advances on precursor characterization and atmospheric cluster composition in connection with atmospheric new particle formation. Annual review of physical chemistry, 65, 21-37.
Lau, A. P., Lee, A. K., Chan, C. K. andFang, M. (2006). Ergosterol as a biomarker for the quantification of the fungal biomass in atmospheric aerosols. Atmospheric Environment, 40(2), 249-259.
Lee, C.-T., Chuang, M.-T., Lin, N.-H., Wang, J.-L., Sheu, G.-R., Chang, S.-C., Wang, S.-H., Huang, H., Chen, H.-W. andLiu, Y.-L. (2011). The enhancement of PM2. 5 mass and water-soluble ions of biosmoke transported from Southeast Asia over the Mountain Lulin site in Taiwan. Atmospheric Environment, 45(32), 5784-5794.
Lee, H.-H., Bar-Or, R. Z. andWang, C. (2017). Biomass burning aerosols and the low-visibility events in Southeast Asia. Atmospheric chemistry and physics, 17(2), 965-980.
Li, X., Han, J., Hopke, P. K., Hu, J., Shu, Q., Chang, Q. andYing, Q. (2019). Quantifying primary and secondary humic-like substances in urban aerosol based on emission source characterization and a source-oriented air quality model. Atmospheric chemistry and physics, 19(4), 2327-2341.
Li, X., Yang, K., Han, J., Ying, Q. andHopke, P. K. (2019). Sources of humic-like substances (HULIS) in PM2. 5 in Beijing: Receptor modeling approach. Science of the Total Environment, 671, 765-775.
Li, Y., Fu, T.-M., Yu, J. Z., Feng, X., Zhang, L., Chen, J., Boreddy, S. K. R., Kawamura, K., Fu, P. andYang, X. (2021). Impacts of chemical degradation on the global budget of atmospheric levoglucosan and its use as a biomass burning tracer. Environmental science & technology, 55(8), 5525-5536.
Lin, C.-Y., Chang, C.-C., Chan, C., Kuo, C., Chen, W.-C., Chu, D. A. andLiu, S. C. (2010). Characteristics of springtime profiles and sources of ozone in the low troposphere over northern Taiwan. Atmospheric Environment, 44(2), 182-193.
Lin, C.-Y., Hsu, H.-M., Lee, Y., Kuo, C.-H., Sheng, Y.-F. andChu, D. (2009). A new transport mechanism of biomass burning from Indochina as identified by modeling studies. Atmospheric chemistry and physics, 9(20), 7901-7911.
Lin, C.-Y., Zhao, C., Liu, X., Lin, N.-H. andChen, W.-N. (2014). Modelling of long-range transport of Southeast Asia biomass-burning aerosols to Taiwan and their radiative forcings over East Asia. Tellus B: Chemical and Physical Meteorology, 66(1), 23733.
Lin, M.-D. andLin, Y.-C. (2002). The application of GIS to air quality analysis in Taichung City, Taiwan, ROC. Environmental Modelling & Software, 17(1), 11-19. https://doi.org/https://doi.org/10.1016/S1364-8152(01)00048-2
Lin, Y. C., Cheng, M. T., Chio, C. P. andKuo, C. Y. (2009). Carbonaceous aerosol measurements at coastal, urban, and inland sites in central Taiwan. Environmental Forensics, 10(1), 7-17.
Mack, J. andBolton, J. R. (1999). Photochemistry of nitrite and nitrate in aqueous solution: a review. Journal of Photochemistry and Photobiology A: Chemistry, 128(1-3), 1-13.
Medeiros, P. M., Fernandes, M. F., Dick, R. P. andSimoneit, B. R. (2006). Seasonal variations in sugar contents and microbial community in a ryegrass soil. Chemosphere, 65(5), 832-839.
Mircea, M., Facchini, M. C., Decesari, S., Fuzzi, S. andCharlson, R. J. (2002). The influence of the organic aerosol component on CCN supersaturation spectra for different aerosol types. Tellus B: Chemical and Physical Meteorology, 54(1), 74-81.
Mitsumoto, K., Yabusaki, K. andAoyagi, H. (2009). Classification of pollen species using autofluorescence image analysis. Journal of Bioscience and Bioengineering, 107(1), 90-94. https://doi.org/https://doi.org/10.1016/j.jbiosc.2008.10.001
Miyazaki, Y., Kondo, Y., Shiraiwa, M., Takegawa, N., Miyakawa, T., Han, S., Kita, K., Hu, M., Deng, Z. andZhao, Y. (2009). Chemical characterization of water‐soluble organic carbon aerosols at a rural site in the Pearl River Delta, China, in the summer of 2006. Journal of Geophysical Research: Atmospheres, 114(D14).
Park, S.-S., Sim, S. Y., Bae, M.-S. andSchauer, J. J. (2013). Size distribution of water-soluble components in particulate matter emitted from biomass burning. Atmospheric Environment, 73, 62-72.
Park, S. S. andCho, S. Y. (2011). Tracking sources and behaviors of water-soluble organic carbon in fine particulate matter measured at an urban site in Korea. Atmospheric Environment, 45(1), 60-72.
Parmesan, C. andYohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421(6918), 37-42.
Pavuluri, C., Kawamura, K., Mihalopoulos, N. andSwaminathan, T. (2015). Laboratory photochemical processing of aqueous aerosols: formation and degradation of dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls. Atmospheric chemistry and physics, 15(14), 7999-8012.
Peccia, J., Hospodsky, D. andBibby, K. (2011). New directions: a revolution in DNA sequencing now allows for the meaningful integration of biology with aerosol science. Atmospheric environment (1994), 45(10), 1896-1897.
Persico, M., Granucci, G., Persico, M. andGranucci, G. (2018). Introduction to Photochemistry. Photochemistry: A Modern Theoretical Perspective, 1-24.
Punsompong, P. andChantara, S. (2018). Identification of potential sources of PM10 pollution from biomass burning in northern Thailand using statistical analysis of trajectories. Atmospheric Pollution Research, 9(6), 1038-1051. https://doi.org/https://doi.org/10.1016/j.apr.2018.04.003
Rai, A., Mukherjee, S., Chatterjee, A., Choudhary, N., Kotnala, G., Mandal, T. andSharma, S. (2020). Seasonal variation of OC, EC, and WSOC of PM 10 and Their CWT analysis over the Eastern Himalaya. Aerosol Science and Engineering, 4, 26-40.
Ravina, M., Caramitti, G., Panepinto, D. andZanetti, M. (2022). Air quality and photochemical reactions: analysis of NOx and NO2 concentrations in the urban area of Turin, Italy. Air Quality, Atmosphere & Health, 15(3), 541-558.
Rogge, W. F., Medeiros, P. M. andSimoneit, B. R. (2007). Organic marker compounds in surface soils of crop fields from the San Joaquin Valley fugitive dust characterization study. Atmospheric Environment, 41(37), 8183-8204.
Rubino, M., D’Onofrio, A., Seki, O. andBendle, J. A. (2016). Ice-core records of biomass burning. The Anthropocene Review, 3(2), 140-162.
Saarikoski, S., Timonen, H., Saarnio, K., Aurela, M., Järvi, L., Keronen, P., Kerminen, V.-M. andHillamo, R. (2008). Sources of organic carbon in fine particulate matter in northern European urban air. Atmospheric chemistry and physics, 8(20), 6281-6295.
Saxena, P. andHildemann, L. M. (1996). Water-soluble organics in atmospheric particles: A critical review of the literature and application of thermodynamics to identify candidate compounds. Journal of Atmospheric Chemistry, 24, 57-109.
Schauer, J. J., Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R. andSimoneit, B. R. T. (1996). Source apportionment of airborne particulate matter using organic compounds as tracers. Atmospheric Environment, 30(22), 3837-3855. https://doi.org/https://doi.org/10.1016/1352-2310(96)00085-4
Schmidl, C., Luisser, M., Padouvas, E., Lasselsberger, L., Rzaca, M., Ramirez-Santa Cruz, C., Handler, M., Peng, G., Bauer, H. andPuxbaum, H. (2011). Particulate and gaseous emissions from manually and automatically fired small scale combustion systems. Atmospheric Environment, 45(39), 7443-7454.
Seinfeld, J. H. (1989). Urban air pollution: state of the science. science, 243(4892), 745-752.
Shafizadeh, F. (1984). The chemistry of pyrolysis and combustion. In. ACS Publications.
Shi, J., Yan, J., Wang, S., Zhao, S., Zhang, M., Xu, S., Lin, Q. andYang, H. (2022). Determinant of sea salt aerosol emission in the Southern Hemisphere in Summer time. Earth and Space Science, 9(11), e2022EA002529.
Simoneit, B. R., Elias, V. O., Kobayashi, M., Kawamura, K., Rushdi, A. I., Medeiros, P. M., Rogge, W. F. andDidyk, B. M. (2004). Sugars dominant water-soluble organic compounds in soils and characterization as tracers in atmospheric particulate matter. Environmental science & technology, 38(22), 5939-5949.
Singh, A., Chou, C. C.-K., Chang, S.-Y., Chang, S.-C., Lin, N.-H., Chuang, M.-T., Pani, S. K., Chi, K. H., Huang, C.-H. andLee, C.-T. (2020). Long-term (2003–2018) trends in aerosol chemical components at a high-altitude background station in the western North Pacific: Impact of long-range transport from continental Asia. Environmental Pollution, 265, 114813.
Sipilä, M., Jokinen, T., Berndt, T., Richters, S., Makkonen, R., Donahue, N., Mauldin III, R., Kurten, T., Paasonen, P. andSarnela, N. (2014). Reactivity of stabilized Criegee intermediates (sCI) from isoprene and monoterpene ozonolysis toward SO2 and organic acids. Atmospheric Chemistry & Physics Discussions, 14(2), 3071-3098.
Sorathia, F., Rajput, P. andGupta, T. (2018). Dicarboxylic acids and levoglucosan in aerosols from Indo-Gangetic Plain: Inferences from day night variability during wintertime. Science of the Total Environment, 624, 451-460.
Sousa, S. I. V., Martins, F. G., Pereira, M. C., Alvim-Ferraz, M. C. M., Ribeiro, H., Oliveira, M. andAbreu, I. (2008). Influence of atmospheric ozone, PM10 and meteorological factors on the concentration of airborne pollen and fungal spores. Atmospheric Environment, 42(32), 7452-7464. https://doi.org/https://doi.org/10.1016/j.atmosenv.2008.06.004
Spranger, T., van Pinxteren, D. andHerrmann, H. (2020). Atmospheric “HULIS” in different environments: polarities, molecular sizes, and sources suggest more than 50% are not “humic-like”. ACS Earth and Space Chemistry, 4(2), 272-282.
Stein, A., Draxler, R. R., Rolph, G. D., Stunder, B. J., Cohen, M. andNgan, F. (2015). NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bulletin of the American Meteorological Society, 96(12), 2059-2077.
Sternberg, M., Brown, V. K., Masters, G. J. andClarke, I. P. (1999). Plant community dynamics in a calcareous grassland under climate change manipulations. Plant Ecology, 143(1), 29-37.
Sullivan, A. P. andWeber, R. J. (2006). Chemical characterization of the ambient organic aerosol soluble in water: 1. Isolation of hydrophobic and hydrophilic fractions with a XAD‐8 resin. Journal of Geophysical Research: Atmospheres, 111(D5).
Tang, S., Li, F., Tsona, N. T., Lu, C., Wang, X. andDu, L. (2020). Aqueous-phase photooxidation of vanillic acid: a potential source of humic-like substances (HULIS). ACS Earth and Space Chemistry, 4(6), 862-872.
Tervahattu, H., Hartonen, K., Kerminen, V. M., Kupiainen, K., Aarnio, P., Koskentalo, T., Tuck, A. F. andVaida, V. (2002). New evidence of an organic layer on marine aerosols. Journal of Geophysical Research: Atmospheres, 107(D7), AAC 1-1-AAC 1-8.
Tillman, D. A. (1981). Review of mechanisms associated with wood combustion. Wood Sci.;(United States), 13(4).
Tsai, Y. I. andCheng, M. T. (2004). Characterization of chemical species in atmospheric aerosols in a metropolitan basin. Chemosphere, 54(8), 1171-1181.
Tsai, Y. I., Sopajaree, K., Chotruksa, A., Wu, H.-C. andKuo, S.-C. (2013). Source indicators of biomass burning associated with inorganic salts and carboxylates in dry season ambient aerosol in Chiang Mai Basin, Thailand. Atmospheric Environment, 78, 93-104. https://doi.org/https://doi.org/10.1016/j.atmosenv.2012.09.040
Tsiodra, I., Grivas, G., Tavernaraki, K., Bougiatioti, A., Apostolaki, M., Paraskevopoulou, D., Gogou, A., Parinos, C., Oikonomou, K. andTsagkaraki, M. (2021). Annual exposure to polycyclic aromatic hydrocarbons in urban environments linked to wintertime wood-burning episodes. Atmospheric chemistry and physics, 21(23), 17865-17883.
Varga, B., Kiss, G., Ganszky, I., Gelencsér, A. andKrivácsy, Z. (2001). Isolation of water-soluble organic matter from atmospheric aerosol. Talanta, 55(3), 561-572.
Vongruang, P. andPimonsree, S. (2020). Biomass burning sources and their contributions to PM10 concentrations over countries in mainland Southeast Asia during a smog episode. Atmospheric Environment, 228, 117414. https://doi.org/https://doi.org/10.1016/j.atmosenv.2020.117414
Wang, S., Pavuluri, C. M., Ren, L., Fu, P., Zhang, Y.-L. andLiu, C.-Q. (2018). Implications for biomass/coal combustion emissions and secondary formation of carbonaceous aerosols in North China. RSC advances, 8(66), 38108-38117.
Wang, T., Liu, Y., Deng, Y., Cheng, H., Yang, Y., Feng, Y., Zhang, L., Fu, H. andChen, J. (2020). Photochemical oxidation of water-soluble organic carbon (WSOC) on mineral dust and enhanced organic ammonium formation. Environmental science & technology, 54(24), 15631-15642.
Wang, X., Shen, Z., Liu, F., Lu, D., Tao, J., Lei, Y., Zhang, Q., Zeng, Y., Xu, H. andWu, Y. (2018). Saccharides in summer and winter PM2. 5 over Xi′an, Northwestern China: Sources, and yearly variations of biomass burning contribution to PM2. 5. Atmospheric Research, 214, 410-417.
Wardle, B. (2009). Principles and applications of photochemistry. John Wiley & Sons.
Weng, G.-H. (2008). 生質燃燒氣膠長程傳輸與高山雲霧間隙氣膠特性之研究 National Central University].
WENT, F. W. (1960). Blue hazes in the atmosphere. Nature, 187(4738), 641-643.
Yan, C., Zheng, M., Sullivan, A. P., Shen, G., Chen, Y., Wang, S., Zhao, B., Cai, S., Desyaterik, Y. andLi, X. (2018). Residential coal combustion as a source of levoglucosan in China. Environmental science & technology, 52(3), 1665-1674.
Yang, Y., Chan, C.-y., Tao, J., Lin, M., Engling, G., Zhang, Z., Zhang, T. andSu, L. (2012). Observation of elevated fungal tracers due to biomass burning in the Sichuan Basin at Chengdu City, China. Science of the Total Environment, 431, 68-77. https://doi.org/https://doi.org/10.1016/j.scitotenv.2012.05.033
Yu, F. andLuo, G. (2009). Simulation of particle size distribution with a global aerosol model: contribution of nucleation to aerosol and CCN number concentrations. Atmospheric chemistry and physics, 9(20), 7691-7710.
Yu, G.-H., Cho, S.-Y., Bae, M.-S. andPark, S.-S. (2014). Difference in production routes of water-soluble organic carbon in PM 2.5 observed during non-biomass and biomass burning periods in Gwangju, Korea. Environmental Science: Processes & Impacts, 16(7), 1726-1736.
Yu, G.-H., Park, S. andLee, K.-H. (2016). Source contributions and potential source regions of size-resolved water-soluble organic carbon measured at an urban site over one year. Environmental Science: Processes & Impacts, 18(10), 1343-1358.
Zhang, J., Qi, A., Wang, Q., Huang, Q., Yao, S., Li, J., Yu, H. andYang, L. (2022). Characteristics of water-soluble organic carbon (WSOC) in PM2.5 in inland and coastal cities, China. Atmospheric Pollution Research, 13(6), 101447. https://doi.org/https://doi.org/10.1016/j.apr.2022.101447
Zhang, S., Tang, H., Li, Q., Li, L., Ge, C., Li, L. andFeng, J. (2021). Secondary organic aerosols in PM2. 5 in Bengbu, a typical city in Central China: concentration, seasonal variation and sources. Atmosphere, 12(7), 854.
Zhang, Y.-N., Zhang, Z.-S., Chan, C.-Y., Engling, G., Sang, X.-F., Shi, S. andWang, X.-M. (2012). Levoglucosan and carbonaceous species in the background aerosol of coastal southeast China: case study on transport of biomass burning smoke from the Philippines. Environmental Science and Pollution Research, 19(1), 244-255.
Zhu, W., Cheng, Z., Luo, L., Lou, S., Ma, Y. andYan, N. (2018). Investigation of fungal spore characteristics in PM2. 5 through organic tracers in Shanghai, China. Atmospheric Pollution Research, 9(5), 894-900.
Ziese, M., Wex, H., Nilsson, E., Salma, I., Ocskay, R., Hennig, T., Massling, A. andStratmann, F. (2008). Hygroscopic growth and activation of HULIS particles: experimental data and a new iterative parameterization scheme for complex aerosol particles. Atmospheric chemistry and physics, 8(6), 1855-1866.
Zou, C., Li, M., Cao, T., Zhu, M., Fan, X., Peng, S., Song, J., Jiang, B., Jia, W., Yu, C., Song, H., Yu, Z., Li, J., Zhang, G. andPeng, P. a. (2020). Comparison of solid phase extraction methods for the measurement of humic-like substances (HULIS) in atmospheric particles. Atmospheric Environment, 225, 117370. https://doi.org/https://doi.org/10.1016/j.atmosenv.2020.117370
廖佳哲. (2014). 長程傳輸對我國大氣中生物性微粒之影響.
余政哲,2010。鹿林山大氣氣膠含水量探討及乾氣膠光學特性。國立中央大學環境工程研究所碩士論文。
侯雅馨,2008。大氣氣膠腐植質含量分析及氣膠成分對氣膠含水量影響的研究。國立中央大學環境工程研究所碩士論文。
廖佳哲,2014。長程傳輸對我國大氣中生物性微粒之影響。臺北醫學大學公共衛生學系暨研究所學位論文。
林佑鈞,2022。2019年鹿林山背景及生質燃燒煙團傳輸氣膠微量有機成分特性。國立中央大學環境工程研究所碩士論文。
巫晨寧,2022。鹿林山2020年春季、秋季及臺中市氣膠微量有機成分特性及來源。國立中央大學環境工程研究所碩士論文。
莊鏡薰,2023。2020 ~ 2021年鹿林山氣膠化學成分及光學特性受生質燃燒長程傳輸影響。國立中央大學環境工程研究所碩士論文。
李崇德, 周崇光, 張士昱, 莊銘棟 and 許文昌 (2021). 110 年度細懸浮微粒 (PM2.5)化學成分基測及分析計畫,期末報告(定稿本),行政院環保署,台北,110 年 12 月.
指導教授 李崇德(Chung-Te Lee) 審核日期 2024-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明