參考文獻 |
Adam, M. G., Tran, P. T. M., Bolan, N. andBalasubramanian, R. (2021). Biomass burning-derived airborne particulate matter in Southeast Asia: A critical review. Journal of Hazardous Materials, 407, 124760. https://doi.org/https://doi.org/10.1016/j.jhazmat.2020.124760
Aggarwal, S. G. andKawamura, K. (2009). Carbonaceous and inorganic composition in long-range transported aerosols over northern Japan: Implication for aging of water-soluble organic fraction. Atmospheric Environment, 43(16), 2532-2540.
Alves, C. A., Vicente, A. M. P., Calvo, A. I., Baumgardner, D., Amato, F., Querol, X., Pio, C. andGustafsson, M. (2020). Physical and chemical properties of non-exhaust particles generated from wear between pavements and tyres. Atmospheric Environment, 224, 117252. https://doi.org/https://doi.org/10.1016/j.atmosenv.2019.117252
Andreae, M. O. (2013). The aerosol nucleation puzzle. science, 339(6122), 911-912.
Andreae, M. O. andCrutzen, P. J. (1997). Atmospheric aerosols: Biogeochemical sources and role in atmospheric chemistry. science, 276(5315), 1052-1058.
Armentia, A., Martín-Armentia, S., Moral, A., Montejo, D., Martin-Armentia, B., Sastre, R., Fernández, S., Corell, A. andFernandez, D. (2019). Molecular study of hypersensitivity to spores in adults and children from Castile & Leon. Allergologia et immunopathologia, 47(4), 350-356.
Asa-Awuku, A., Sullivan, A., Hennigan, C., Weber, R. andNenes, A. (2008). Investigation of molar volume and surfactant characteristics of water-soluble organic compounds in biomass burning aerosol. Atmospheric chemistry and physics, 8(4), 799-812.
Baduel, C., Voisin, D. andJaffrezo, J.-L. (2009). Comparison of analytical methods for Humic Like Substances (HULIS) measurements in atmospheric particles. Atmospheric chemistry and physics, 9(16), 5949-5962.
Baduel, C., Voisin, D. andJaffrezo, J.-L. (2010). Seasonal variations of concentrations and optical properties of water soluble HULIS collected in urban environments. Atmospheric chemistry and physics, 10(9), 4085-4095.
Beerling, D. J. andOsborne, C. P. (2006). The origin of the savanna biome. Global change biology, 12(11), 2023-2031.
Bhardwaj, P., Naja, M., Kumar, R. andChandola, H. (2016). Seasonal, interannual, and long-term variabilities in biomass burning activity over South Asia. Environmental Science and Pollution Research, 23(5), 4397-4410.
Bigler, M., Röthlisberger, R., Lambert, F., Stocker, T. F. andWagenbach, D. (2006). Aerosol deposited in East Antarctica over the last glacial cycle: Detailed apportionment of continental and sea‐salt contributions. Journal of Geophysical Research: Atmospheres, 111(D8).
Bikkina, P., Bikkina, S. andKawamura, K. (2022). Tracing the biomass burning emissions over the Arabian Sea in winter season: Implications from the molecular distributions and relative abundances of sugar compounds. Science of the Total Environment, 848, 157643. https://doi.org/https://doi.org/10.1016/j.scitotenv.2022.157643
Bikkina, S., Kawamura, K. andMiyazaki, Y. (2015). Latitudinal distributions of atmospheric dicarboxylic acids, oxocarboxylic acids, and α‐dicarbonyls over the western North Pacific: Sources and formation pathways. Journal of Geophysical Research: Atmospheres, 120(10), 5010-5035.
Blando, J. D. andTurpin, B. J. (2000). Secondary organic aerosol formation in cloud and fog droplets: a literature evaluation of plausibility. Atmospheric Environment, 34(10), 1623-1632.
Bougiatioti, A., Zarmpas, P., Koulouri, E., Antoniou, M., Theodosi, C., Kouvarakis, G., Saarikoski, S., Mäkelä, T., Hillamo, R. andMihalopoulos, N. (2013). Organic, elemental and water-soluble organic carbon in size segregated aerosols, in the marine boundary layer of the Eastern Mediterranean. Atmospheric Environment, 64, 251-262.
Boule, P. andBahnemann, D. (1999). Environmental photochemistry (Vol. 2). Springer Science & Business Media.
Brauer, M. (2016). The global burden of disease from air pollution. 2016 AAAS Annual Meeting (February 11-15, 2016),
Brown, S. G., Eberly, S., Paatero, P. andNorris, G. A. (2015). Methods for estimating uncertainty in PMF solutions: Examples with ambient air and water quality data and guidance on reporting PMF results. Science of the Total Environment, 518, 626-635.
Cao, F., Zhang, S.-C., Kawamura, K., Liu, X., Yang, C., Xu, Z., Fan, M., Zhang, W., Bao, M. andChang, Y. (2017). Chemical characteristics of dicarboxylic acids and related organic compounds in PM2. 5 during biomass-burning and non-biomass-burning seasons at a rural site of Northeast China. Environmental Pollution, 231, 654-662.
Čapka, L., Mikuška, P. andKřůmal, K. (2020). Determination of dicarboxylic acids in atmospheric aerosols using continuous aerosol sampler with on-line connected ion chromatography system. Atmospheric Environment, 222, 117178.
Chen, L., Li, Q., Wu, D., Sun, H., Wei, Y., Ding, X., Chen, H., Cheng, T. andChen, J. (2019). Size distribution and chemical composition of primary particles emitted during open biomass burning processes: Impacts on cloud condensation nuclei activation. Science of the Total Environment, 674, 179-188. https://doi.org/https://doi.org/10.1016/j.scitotenv.2019.03.419
Chen, N., You, J., Huang, J., Yang, Y., Lin, H., Qi, X., Chen, X., Yang, Y. andHu, B. (2023). Secondary organic aerosols in PM2.5 on a coastal island in southeastern China: Impact of atmospheric process and biomass burning. Atmospheric Environment, 306, 119841. https://doi.org/https://doi.org/10.1016/j.atmosenv.2023.119841
Chi, K. H., Lin, C.-Y., Yang, C.-F. O., Wang, J.-L., Lin, N.-H., Sheu, G.-R. andLee, C.-T. (2010). PCDD/F measurement at a high-altitude station in Central Taiwan: evaluation of long-range transport of PCDD/Fs during the Southeast Asia biomass burning event. Environmental science & technology, 44(8), 2954-2960.
Christopher, S. A., Kliche, D. V., Chou, J. andWelch, R. M. (1996). First estimates of the radiative forcing of aerosols generated from biomass burning using satellite data. Journal of Geophysical Research: Atmospheres, 101(D16), 21265-21273.
Chuang, M.-T., Lee, C.-T., Chou, C. C.-K., Engling, G., Chang, S.-Y., Chang, S.-C., Sheu, G.-R., Lin, N.-H., Sopajaree, K. andChang, Y.-J. (2016). Aerosol transport from Chiang Mai, Thailand to Mt. Lulin, Taiwan–Implication of aerosol aging during long-range transport. Atmospheric Environment, 137, 101-112.
Cohen, R. C. andMurphy, J. G. (2003). Photochemistry of NO2 in Earth′s stratosphere: constraints from observations. Chemical reviews, 103(12), 4985-4998.
Coyle, J. D. (1991). Introduction to organic photochemistry. John Wiley & Sons.
Crutzen, P. J. andAndreae, M. O. (1990). Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles. science, 250(4988), 1669-1678.
Decesari, S., Fuzzi, S., Facchini, M., Mircea, M., Emblico, L., Cavalli, F., Maenhaut, W., Chi, X., Schkolnik, G. andFalkovich, A. (2006). Characterization of the organic composition of aerosols from Rondônia, Brazil, during the LBA-SMOCC 2002 experiment and its representation through model compounds. Atmospheric chemistry and physics, 6(2), 375-402.
Deshmukh, D. K., Haque, M. M., Kawamura, K. andKim, Y. (2018). Dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls in fine aerosols over central Alaska: implications for sources and atmospheric processes. Atmospheric Research, 202, 128-139.
Dhandapani, S. andEvers, S. (2020). Oil palm ‘slash-and-burn’ practice increases post-fire greenhouse gas emissions and nutrient concentrations in burnt regions of an agricultural tropical peatland. Science of the Total Environment, 742, 140648. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.140648
Diallo, M. S., Simpson, A., Gassman, P., Faulon, J. L., Johnson, J. H., Goddard, W. A. andHatcher, P. G. (2003). 3-D structural modeling of humic acids through experimental characterization, computer assisted structure elucidation and atomistic simulations. 1. Chelsea soil humic acid. Environmental science & technology, 37(9), 1783-1793.
Duc, H. N., Bang, H. Q. andQuang, N. X. (2016). Modelling and prediction of air pollutant transport during the 2014 biomass burning and forest fires in peninsular Southeast Asia. Environmental monitoring and assessment, 188, 1-23.
Dusek, U., Hitzenberger, R., Kasper-Giebl, A., Kistler, M., Meijer, H. A., Szidat, S., Wacker, L., Holzinger, R. andRöckmann, T. (2017). Sources and formation mechanisms of carbonaceous aerosol at a regional background site in the Netherlands: insights from a year-long radiocarbon study. Atmospheric chemistry and physics, 17(5), 3233-3251.
Dutton, M. V. andEvans, C. S. (1996). Oxalate production by fungi: its role in pathogenicity and ecology in the soil environment. Canadian journal of microbiology, 42(9), 881-895.
Emygdio, A. P. M., de Fátima Andrade, M., Gonçalves, F. L. T., Engling, G., de Souza Zanetti, R. H. andKumar, P. (2018). Biomarkers as indicators of fungal biomass in the atmosphere of São Paulo, Brazil. Science of the Total Environment, 612, 809-821.
Engling, G., Lee, J. J., Tsai, Y.-W., Lung, S.-C. C., Chou, C. C.-K. andChan, C.-Y. (2009). Size-resolved anhydrosugar composition in smoke aerosol from controlled field burning of rice straw. Aerosol Science and Technology, 43(7), 662-672.
Fine, P. M., Cass, G. R. andSimoneit, B. R. (2004). Chemical characterization of fine particle emissions from the fireplace combustion of wood types grown in the Midwestern and Western United States. Environmental Engineering Science, 21(3), 387-409.
Fourtziou, L., Liakakou, E., Stavroulas, I., Theodosi, C., Zarmpas, P., Psiloglou, B., Sciare, J., Maggos, T., Bairachtari, K. andBougiatioti, A. (2017). Multi-tracer approach to characterize domestic wood burning in Athens (Greece) during wintertime. Atmospheric Environment, 148, 89-101.
Gao, S., Hegg, D. A., Hobbs, P. V., Kirchstetter, T. W., Magi, B. I. andSadilek, M. (2003). Water‐soluble organic components in aerosols associated with savanna fires in southern Africa: Identification, evolution, and distribution. Journal of Geophysical Research: Atmospheres, 108(D13).
Gao, S., Keywood, M., Ng, N. L., Surratt, J., Varutbangkul, V., Bahreini, R., Flagan, R. C. andSeinfeld, J. H. (2004). Low-molecular-weight and oligomeric components in secondary organic aerosol from the ozonolysis of cycloalkenes and α-pinene. The Journal of Physical Chemistry A, 108(46), 10147-10164.
Gautam, R., Hsu, N. C., Eck, T. F., Holben, B. N., Janjai, S., Jantarach, T., Tsay, S.-C. andLau, W. K. (2013). Characterization of aerosols over the Indochina peninsula from satellite-surface observations during biomass burning pre-monsoon season. Atmospheric Environment, 78, 51-59.
Graber, E. andRudich, Y. (2006). Atmospheric HULIS: How humic-like are they? A comprehensive and critical review. Atmospheric chemistry and physics, 6(3), 729-753.
Gysel, M., Weingartner, E., Nyeki, S., Paulsen, D., Baltensperger, U., Galambos, I. andKiss, G. (2004). Hygroscopic properties of water-soluble matter and humic-like organics in atmospheric fine aerosol. Atmospheric chemistry and physics, 4(1), 35-50.
Haque, M. M., Verma, S. K., Deshmukh, D. K., Kunwar, B., Miyazaki, Y. andKawamura, K. (2021). Seasonal and temporal variations of ambient aerosols in a deciduous broadleaf forest from northern Japan: Contributions of biomass burning and biological particles. Chemosphere, 279, 130540.
Havers, N., Burba, P., Lambert, J. andKlockow, D. (1998a). Spectroscopic characterization of humic-like substances in airborne particulate matter. Journal of Atmospheric Chemistry, 29(1), 45-54.
Havers, N., Burba, P., Lambert, J. andKlockow, D. (1998b). Spectroscopic characterization of humic-like substances in airborne particulate matter. Journal of Atmospheric Chemistry, 29, 45-54.
Haywood, J. andBoucher, O. (2000). Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review. Reviews of geophysics, 38(4), 513-543.
Ho, K., Lee, S., Cao, J., Li, Y. S., Chow, J. C., Watson, J. G. andFung, K. (2006). Variability of organic and elemental carbon, water soluble organic carbon, and isotopes in Hong Kong. Atmospheric chemistry and physics, 6(12), 4569-4576.
Hoffer, A., Gelencsér, A., Guyon, P., Kiss, G., Schmid, O., Frank, G., Artaxo, P. andAndreae, M. (2006). Optical properties of humic-like substances (HULIS) in biomass-burning aerosols. Atmospheric chemistry and physics, 6(11), 3563-3570.
Hoffer, A., Kiss, G., Blazso, M. andGelencsér, A. (2004). Chemical characterization of humic‐like substances (HULIS) formed from a lignin‐type precursor in model cloud water. Geophysical Research Letters, 31(6).
Hsu, C.-L., Cheng, C.-Y., Lee, C.-T. andDing, W.-H. (2007). Derivatization procedures and determination of levoglucosan and related monosaccharide anhydrides in atmospheric aerosols by gas chromatography–mass spectrometry. Talanta, 72(1), 199-205. https://doi.org/https://doi.org/10.1016/j.talanta.2006.10.018
Huang, X. F., Yu, J. Z., He, L. Y. andYuan, Z. (2006). Water‐soluble organic carbon and oxalate in aerosols at a coastal urban site in China: Size distribution characteristics, sources, and formation mechanisms. Journal of Geophysical Research: Atmospheres, 111(D22).
Ikemori, F., Uranishi, K., Sato, T., Fujihara, M., Hasegawa, H. andSugata, S. (2021). Time-resolved characterization of organic compounds in PM2. 5 collected at Oki Island, Japan, affected by transboundary pollution of biomass and non-biomass burning from Northeast China. Science of The Total Environment, 750, 142183.
Kaneyasu, N., Igarashi, Y., Sawa, Y., Takahashi, H., Takada, H., Kumata, H. andHoeller, R. (2007). Chemical and optical properties of 2003 Siberian forest fire smoke observed at the summit of Mt. Fuji, Japan. Journal of Geophysical Research: Atmospheres, 112(D13).
Kaskaoutis, D., Grivas, G., Oikonomou, K., Tavernaraki, P., Papoutsidaki, K., Tsagkaraki, M., Stavroulas, I., Zarmpas, P., Paraskevopoulou, D. andBougiatioti, A. (2022). Impacts of severe residential wood burning on atmospheric processing, water-soluble organic aerosol and light absorption, in an inland city of Southeastern Europe. Atmospheric Environment, 280, 119139.
Kaskaoutis, D. G., Grivas, G., Oikonomou, K., Tavernaraki, P., Papoutsidaki, K., Tsagkaraki, M., Stavroulas, I., Zarmpas, P., Paraskevopoulou, D., Bougiatioti, A., Liakakou, E., Gavrouzou, M., Dumka, U. C., Hatzianastassiou, N., Sciare, J., Gerasopoulos, E. andMihalopoulos, N. (2022). Impacts of severe residential wood burning on atmospheric processing, water-soluble organic aerosol and light absorption, in an inland city of Southeastern Europe. Atmospheric Environment, 280, 119139. https://doi.org/https://doi.org/10.1016/j.atmosenv.2022.119139
Kaspari, S., Dixon, D., Sneed, S. andHandley, M. (2005). Sources and transport pathways of marine aerosol species into West Antarctica. Annals of Glaciology, 41, 1-9.
Kawamura, K. andKaplan, I. R. (1987). Motor exhaust emissions as a primary source for dicarboxylic acids in Los Angeles ambient air. Environmental science & technology, 21(1), 105-110.
Kawamura, K. andSakaguchi, F. (1999). Molecular distributions of water soluble dicarboxylic acids in marine aerosols over the Pacific Ocean including tropics. Journal of Geophysical Research: Atmospheres, 104(D3), 3501-3509.
Kawamura, K. andUsukura, K. (1993). Distributions of low molecular weight dicarboxylic acids in the North Pacific aerosol samples. Journal of Oceanography, 49(3), 271-283.
Kerminen, V.-M., Chen, X., Vakkari, V., Petäjä, T., Kulmala, M. andBianchi, F. (2018). Atmospheric new particle formation and growth: review of field observations. Environmental Research Letters, 13(10), 103003.
Kiss, G., Tombácz, E. andHansson, H.-C. (2005). Surface tension effects of humic-like substances in the aqueous extract of tropospheric fine aerosol. Journal of Atmospheric Chemistry, 50, 279-294.
Kristensen, T. B., Wex, H., Nekat, B., Nøjgaard, J. K., van Pinxteren, D., Lowenthal, D. H., Mazzoleni, L. R., Dieckmann, K., Bender Koch, C. andMentel, T. F. (2012). Hygroscopic growth and CCN activity of HULIS from different environments. Journal of Geophysical Research: Atmospheres, 117(D22).
Krivácsy, Z., Gelencsér, A., Kiss, G., Mészáros, E., Molnár, Á., Hoffer, A., Mészáros, T., Sárvári, Z., Temesi, D. andVarga, B. (2001). Study on the chemical character of water soluble organic compounds in fine atmospheric aerosol at the Jungfraujoch. Journal of Atmospheric Chemistry, 39, 235-259.
Kuang, B. Y., Lin, P., Huang, X. andYu, J. Z. (2015). Sources of humic-like substances in the Pearl River Delta, China: positive matrix factorization analysis of PM 2.5 major components and source markers. Atmospheric chemistry and physics, 15(4), 1995-2008.
Kulmala, M., Kontkanen, J., Junninen, H., Lehtipalo, K., Manninen, H. E., Nieminen, T., Petäjä, T., Sipilä, M., Schobesberger, S. andRantala, P. (2013). Direct observations of atmospheric aerosol nucleation. science, 339(6122), 943-946.
Kulmala, M., Petäjä, T., Ehn, M., Thornton, J., Sipilä, M., Worsnop, D. andKerminen, V.-M. (2014). Chemistry of atmospheric nucleation: on the recent advances on precursor characterization and atmospheric cluster composition in connection with atmospheric new particle formation. Annual review of physical chemistry, 65, 21-37.
Lau, A. P., Lee, A. K., Chan, C. K. andFang, M. (2006). Ergosterol as a biomarker for the quantification of the fungal biomass in atmospheric aerosols. Atmospheric Environment, 40(2), 249-259.
Lee, C.-T., Chuang, M.-T., Lin, N.-H., Wang, J.-L., Sheu, G.-R., Chang, S.-C., Wang, S.-H., Huang, H., Chen, H.-W. andLiu, Y.-L. (2011). The enhancement of PM2. 5 mass and water-soluble ions of biosmoke transported from Southeast Asia over the Mountain Lulin site in Taiwan. Atmospheric Environment, 45(32), 5784-5794.
Lee, H.-H., Bar-Or, R. Z. andWang, C. (2017). Biomass burning aerosols and the low-visibility events in Southeast Asia. Atmospheric chemistry and physics, 17(2), 965-980.
Li, X., Han, J., Hopke, P. K., Hu, J., Shu, Q., Chang, Q. andYing, Q. (2019). Quantifying primary and secondary humic-like substances in urban aerosol based on emission source characterization and a source-oriented air quality model. Atmospheric chemistry and physics, 19(4), 2327-2341.
Li, X., Yang, K., Han, J., Ying, Q. andHopke, P. K. (2019). Sources of humic-like substances (HULIS) in PM2. 5 in Beijing: Receptor modeling approach. Science of the Total Environment, 671, 765-775.
Li, Y., Fu, T.-M., Yu, J. Z., Feng, X., Zhang, L., Chen, J., Boreddy, S. K. R., Kawamura, K., Fu, P. andYang, X. (2021). Impacts of chemical degradation on the global budget of atmospheric levoglucosan and its use as a biomass burning tracer. Environmental science & technology, 55(8), 5525-5536.
Lin, C.-Y., Chang, C.-C., Chan, C., Kuo, C., Chen, W.-C., Chu, D. A. andLiu, S. C. (2010). Characteristics of springtime profiles and sources of ozone in the low troposphere over northern Taiwan. Atmospheric Environment, 44(2), 182-193.
Lin, C.-Y., Hsu, H.-M., Lee, Y., Kuo, C.-H., Sheng, Y.-F. andChu, D. (2009). A new transport mechanism of biomass burning from Indochina as identified by modeling studies. Atmospheric chemistry and physics, 9(20), 7901-7911.
Lin, C.-Y., Zhao, C., Liu, X., Lin, N.-H. andChen, W.-N. (2014). Modelling of long-range transport of Southeast Asia biomass-burning aerosols to Taiwan and their radiative forcings over East Asia. Tellus B: Chemical and Physical Meteorology, 66(1), 23733.
Lin, M.-D. andLin, Y.-C. (2002). The application of GIS to air quality analysis in Taichung City, Taiwan, ROC. Environmental Modelling & Software, 17(1), 11-19. https://doi.org/https://doi.org/10.1016/S1364-8152(01)00048-2
Lin, Y. C., Cheng, M. T., Chio, C. P. andKuo, C. Y. (2009). Carbonaceous aerosol measurements at coastal, urban, and inland sites in central Taiwan. Environmental Forensics, 10(1), 7-17.
Mack, J. andBolton, J. R. (1999). Photochemistry of nitrite and nitrate in aqueous solution: a review. Journal of Photochemistry and Photobiology A: Chemistry, 128(1-3), 1-13.
Medeiros, P. M., Fernandes, M. F., Dick, R. P. andSimoneit, B. R. (2006). Seasonal variations in sugar contents and microbial community in a ryegrass soil. Chemosphere, 65(5), 832-839.
Mircea, M., Facchini, M. C., Decesari, S., Fuzzi, S. andCharlson, R. J. (2002). The influence of the organic aerosol component on CCN supersaturation spectra for different aerosol types. Tellus B: Chemical and Physical Meteorology, 54(1), 74-81.
Mitsumoto, K., Yabusaki, K. andAoyagi, H. (2009). Classification of pollen species using autofluorescence image analysis. Journal of Bioscience and Bioengineering, 107(1), 90-94. https://doi.org/https://doi.org/10.1016/j.jbiosc.2008.10.001
Miyazaki, Y., Kondo, Y., Shiraiwa, M., Takegawa, N., Miyakawa, T., Han, S., Kita, K., Hu, M., Deng, Z. andZhao, Y. (2009). Chemical characterization of water‐soluble organic carbon aerosols at a rural site in the Pearl River Delta, China, in the summer of 2006. Journal of Geophysical Research: Atmospheres, 114(D14).
Park, S.-S., Sim, S. Y., Bae, M.-S. andSchauer, J. J. (2013). Size distribution of water-soluble components in particulate matter emitted from biomass burning. Atmospheric Environment, 73, 62-72.
Park, S. S. andCho, S. Y. (2011). Tracking sources and behaviors of water-soluble organic carbon in fine particulate matter measured at an urban site in Korea. Atmospheric Environment, 45(1), 60-72.
Parmesan, C. andYohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421(6918), 37-42.
Pavuluri, C., Kawamura, K., Mihalopoulos, N. andSwaminathan, T. (2015). Laboratory photochemical processing of aqueous aerosols: formation and degradation of dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls. Atmospheric chemistry and physics, 15(14), 7999-8012.
Peccia, J., Hospodsky, D. andBibby, K. (2011). New directions: a revolution in DNA sequencing now allows for the meaningful integration of biology with aerosol science. Atmospheric environment (1994), 45(10), 1896-1897.
Persico, M., Granucci, G., Persico, M. andGranucci, G. (2018). Introduction to Photochemistry. Photochemistry: A Modern Theoretical Perspective, 1-24.
Punsompong, P. andChantara, S. (2018). Identification of potential sources of PM10 pollution from biomass burning in northern Thailand using statistical analysis of trajectories. Atmospheric Pollution Research, 9(6), 1038-1051. https://doi.org/https://doi.org/10.1016/j.apr.2018.04.003
Rai, A., Mukherjee, S., Chatterjee, A., Choudhary, N., Kotnala, G., Mandal, T. andSharma, S. (2020). Seasonal variation of OC, EC, and WSOC of PM 10 and Their CWT analysis over the Eastern Himalaya. Aerosol Science and Engineering, 4, 26-40.
Ravina, M., Caramitti, G., Panepinto, D. andZanetti, M. (2022). Air quality and photochemical reactions: analysis of NOx and NO2 concentrations in the urban area of Turin, Italy. Air Quality, Atmosphere & Health, 15(3), 541-558.
Rogge, W. F., Medeiros, P. M. andSimoneit, B. R. (2007). Organic marker compounds in surface soils of crop fields from the San Joaquin Valley fugitive dust characterization study. Atmospheric Environment, 41(37), 8183-8204.
Rubino, M., D’Onofrio, A., Seki, O. andBendle, J. A. (2016). Ice-core records of biomass burning. The Anthropocene Review, 3(2), 140-162.
Saarikoski, S., Timonen, H., Saarnio, K., Aurela, M., Järvi, L., Keronen, P., Kerminen, V.-M. andHillamo, R. (2008). Sources of organic carbon in fine particulate matter in northern European urban air. Atmospheric chemistry and physics, 8(20), 6281-6295.
Saxena, P. andHildemann, L. M. (1996). Water-soluble organics in atmospheric particles: A critical review of the literature and application of thermodynamics to identify candidate compounds. Journal of Atmospheric Chemistry, 24, 57-109.
Schauer, J. J., Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R. andSimoneit, B. R. T. (1996). Source apportionment of airborne particulate matter using organic compounds as tracers. Atmospheric Environment, 30(22), 3837-3855. https://doi.org/https://doi.org/10.1016/1352-2310(96)00085-4
Schmidl, C., Luisser, M., Padouvas, E., Lasselsberger, L., Rzaca, M., Ramirez-Santa Cruz, C., Handler, M., Peng, G., Bauer, H. andPuxbaum, H. (2011). Particulate and gaseous emissions from manually and automatically fired small scale combustion systems. Atmospheric Environment, 45(39), 7443-7454.
Seinfeld, J. H. (1989). Urban air pollution: state of the science. science, 243(4892), 745-752.
Shafizadeh, F. (1984). The chemistry of pyrolysis and combustion. In. ACS Publications.
Shi, J., Yan, J., Wang, S., Zhao, S., Zhang, M., Xu, S., Lin, Q. andYang, H. (2022). Determinant of sea salt aerosol emission in the Southern Hemisphere in Summer time. Earth and Space Science, 9(11), e2022EA002529.
Simoneit, B. R., Elias, V. O., Kobayashi, M., Kawamura, K., Rushdi, A. I., Medeiros, P. M., Rogge, W. F. andDidyk, B. M. (2004). Sugars dominant water-soluble organic compounds in soils and characterization as tracers in atmospheric particulate matter. Environmental science & technology, 38(22), 5939-5949.
Singh, A., Chou, C. C.-K., Chang, S.-Y., Chang, S.-C., Lin, N.-H., Chuang, M.-T., Pani, S. K., Chi, K. H., Huang, C.-H. andLee, C.-T. (2020). Long-term (2003–2018) trends in aerosol chemical components at a high-altitude background station in the western North Pacific: Impact of long-range transport from continental Asia. Environmental Pollution, 265, 114813.
Sipilä, M., Jokinen, T., Berndt, T., Richters, S., Makkonen, R., Donahue, N., Mauldin III, R., Kurten, T., Paasonen, P. andSarnela, N. (2014). Reactivity of stabilized Criegee intermediates (sCI) from isoprene and monoterpene ozonolysis toward SO2 and organic acids. Atmospheric Chemistry & Physics Discussions, 14(2), 3071-3098.
Sorathia, F., Rajput, P. andGupta, T. (2018). Dicarboxylic acids and levoglucosan in aerosols from Indo-Gangetic Plain: Inferences from day night variability during wintertime. Science of the Total Environment, 624, 451-460.
Sousa, S. I. V., Martins, F. G., Pereira, M. C., Alvim-Ferraz, M. C. M., Ribeiro, H., Oliveira, M. andAbreu, I. (2008). Influence of atmospheric ozone, PM10 and meteorological factors on the concentration of airborne pollen and fungal spores. Atmospheric Environment, 42(32), 7452-7464. https://doi.org/https://doi.org/10.1016/j.atmosenv.2008.06.004
Spranger, T., van Pinxteren, D. andHerrmann, H. (2020). Atmospheric “HULIS” in different environments: polarities, molecular sizes, and sources suggest more than 50% are not “humic-like”. ACS Earth and Space Chemistry, 4(2), 272-282.
Stein, A., Draxler, R. R., Rolph, G. D., Stunder, B. J., Cohen, M. andNgan, F. (2015). NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bulletin of the American Meteorological Society, 96(12), 2059-2077.
Sternberg, M., Brown, V. K., Masters, G. J. andClarke, I. P. (1999). Plant community dynamics in a calcareous grassland under climate change manipulations. Plant Ecology, 143(1), 29-37.
Sullivan, A. P. andWeber, R. J. (2006). Chemical characterization of the ambient organic aerosol soluble in water: 1. Isolation of hydrophobic and hydrophilic fractions with a XAD‐8 resin. Journal of Geophysical Research: Atmospheres, 111(D5).
Tang, S., Li, F., Tsona, N. T., Lu, C., Wang, X. andDu, L. (2020). Aqueous-phase photooxidation of vanillic acid: a potential source of humic-like substances (HULIS). ACS Earth and Space Chemistry, 4(6), 862-872.
Tervahattu, H., Hartonen, K., Kerminen, V. M., Kupiainen, K., Aarnio, P., Koskentalo, T., Tuck, A. F. andVaida, V. (2002). New evidence of an organic layer on marine aerosols. Journal of Geophysical Research: Atmospheres, 107(D7), AAC 1-1-AAC 1-8.
Tillman, D. A. (1981). Review of mechanisms associated with wood combustion. Wood Sci.;(United States), 13(4).
Tsai, Y. I. andCheng, M. T. (2004). Characterization of chemical species in atmospheric aerosols in a metropolitan basin. Chemosphere, 54(8), 1171-1181.
Tsai, Y. I., Sopajaree, K., Chotruksa, A., Wu, H.-C. andKuo, S.-C. (2013). Source indicators of biomass burning associated with inorganic salts and carboxylates in dry season ambient aerosol in Chiang Mai Basin, Thailand. Atmospheric Environment, 78, 93-104. https://doi.org/https://doi.org/10.1016/j.atmosenv.2012.09.040
Tsiodra, I., Grivas, G., Tavernaraki, K., Bougiatioti, A., Apostolaki, M., Paraskevopoulou, D., Gogou, A., Parinos, C., Oikonomou, K. andTsagkaraki, M. (2021). Annual exposure to polycyclic aromatic hydrocarbons in urban environments linked to wintertime wood-burning episodes. Atmospheric chemistry and physics, 21(23), 17865-17883.
Varga, B., Kiss, G., Ganszky, I., Gelencsér, A. andKrivácsy, Z. (2001). Isolation of water-soluble organic matter from atmospheric aerosol. Talanta, 55(3), 561-572.
Vongruang, P. andPimonsree, S. (2020). Biomass burning sources and their contributions to PM10 concentrations over countries in mainland Southeast Asia during a smog episode. Atmospheric Environment, 228, 117414. https://doi.org/https://doi.org/10.1016/j.atmosenv.2020.117414
Wang, S., Pavuluri, C. M., Ren, L., Fu, P., Zhang, Y.-L. andLiu, C.-Q. (2018). Implications for biomass/coal combustion emissions and secondary formation of carbonaceous aerosols in North China. RSC advances, 8(66), 38108-38117.
Wang, T., Liu, Y., Deng, Y., Cheng, H., Yang, Y., Feng, Y., Zhang, L., Fu, H. andChen, J. (2020). Photochemical oxidation of water-soluble organic carbon (WSOC) on mineral dust and enhanced organic ammonium formation. Environmental science & technology, 54(24), 15631-15642.
Wang, X., Shen, Z., Liu, F., Lu, D., Tao, J., Lei, Y., Zhang, Q., Zeng, Y., Xu, H. andWu, Y. (2018). Saccharides in summer and winter PM2. 5 over Xi′an, Northwestern China: Sources, and yearly variations of biomass burning contribution to PM2. 5. Atmospheric Research, 214, 410-417.
Wardle, B. (2009). Principles and applications of photochemistry. John Wiley & Sons.
Weng, G.-H. (2008). 生質燃燒氣膠長程傳輸與高山雲霧間隙氣膠特性之研究 National Central University].
WENT, F. W. (1960). Blue hazes in the atmosphere. Nature, 187(4738), 641-643.
Yan, C., Zheng, M., Sullivan, A. P., Shen, G., Chen, Y., Wang, S., Zhao, B., Cai, S., Desyaterik, Y. andLi, X. (2018). Residential coal combustion as a source of levoglucosan in China. Environmental science & technology, 52(3), 1665-1674.
Yang, Y., Chan, C.-y., Tao, J., Lin, M., Engling, G., Zhang, Z., Zhang, T. andSu, L. (2012). Observation of elevated fungal tracers due to biomass burning in the Sichuan Basin at Chengdu City, China. Science of the Total Environment, 431, 68-77. https://doi.org/https://doi.org/10.1016/j.scitotenv.2012.05.033
Yu, F. andLuo, G. (2009). Simulation of particle size distribution with a global aerosol model: contribution of nucleation to aerosol and CCN number concentrations. Atmospheric chemistry and physics, 9(20), 7691-7710.
Yu, G.-H., Cho, S.-Y., Bae, M.-S. andPark, S.-S. (2014). Difference in production routes of water-soluble organic carbon in PM 2.5 observed during non-biomass and biomass burning periods in Gwangju, Korea. Environmental Science: Processes & Impacts, 16(7), 1726-1736.
Yu, G.-H., Park, S. andLee, K.-H. (2016). Source contributions and potential source regions of size-resolved water-soluble organic carbon measured at an urban site over one year. Environmental Science: Processes & Impacts, 18(10), 1343-1358.
Zhang, J., Qi, A., Wang, Q., Huang, Q., Yao, S., Li, J., Yu, H. andYang, L. (2022). Characteristics of water-soluble organic carbon (WSOC) in PM2.5 in inland and coastal cities, China. Atmospheric Pollution Research, 13(6), 101447. https://doi.org/https://doi.org/10.1016/j.apr.2022.101447
Zhang, S., Tang, H., Li, Q., Li, L., Ge, C., Li, L. andFeng, J. (2021). Secondary organic aerosols in PM2. 5 in Bengbu, a typical city in Central China: concentration, seasonal variation and sources. Atmosphere, 12(7), 854.
Zhang, Y.-N., Zhang, Z.-S., Chan, C.-Y., Engling, G., Sang, X.-F., Shi, S. andWang, X.-M. (2012). Levoglucosan and carbonaceous species in the background aerosol of coastal southeast China: case study on transport of biomass burning smoke from the Philippines. Environmental Science and Pollution Research, 19(1), 244-255.
Zhu, W., Cheng, Z., Luo, L., Lou, S., Ma, Y. andYan, N. (2018). Investigation of fungal spore characteristics in PM2. 5 through organic tracers in Shanghai, China. Atmospheric Pollution Research, 9(5), 894-900.
Ziese, M., Wex, H., Nilsson, E., Salma, I., Ocskay, R., Hennig, T., Massling, A. andStratmann, F. (2008). Hygroscopic growth and activation of HULIS particles: experimental data and a new iterative parameterization scheme for complex aerosol particles. Atmospheric chemistry and physics, 8(6), 1855-1866.
Zou, C., Li, M., Cao, T., Zhu, M., Fan, X., Peng, S., Song, J., Jiang, B., Jia, W., Yu, C., Song, H., Yu, Z., Li, J., Zhang, G. andPeng, P. a. (2020). Comparison of solid phase extraction methods for the measurement of humic-like substances (HULIS) in atmospheric particles. Atmospheric Environment, 225, 117370. https://doi.org/https://doi.org/10.1016/j.atmosenv.2020.117370
廖佳哲. (2014). 長程傳輸對我國大氣中生物性微粒之影響.
余政哲,2010。鹿林山大氣氣膠含水量探討及乾氣膠光學特性。國立中央大學環境工程研究所碩士論文。
侯雅馨,2008。大氣氣膠腐植質含量分析及氣膠成分對氣膠含水量影響的研究。國立中央大學環境工程研究所碩士論文。
廖佳哲,2014。長程傳輸對我國大氣中生物性微粒之影響。臺北醫學大學公共衛生學系暨研究所學位論文。
林佑鈞,2022。2019年鹿林山背景及生質燃燒煙團傳輸氣膠微量有機成分特性。國立中央大學環境工程研究所碩士論文。
巫晨寧,2022。鹿林山2020年春季、秋季及臺中市氣膠微量有機成分特性及來源。國立中央大學環境工程研究所碩士論文。
莊鏡薰,2023。2020 ~ 2021年鹿林山氣膠化學成分及光學特性受生質燃燒長程傳輸影響。國立中央大學環境工程研究所碩士論文。
李崇德, 周崇光, 張士昱, 莊銘棟 and 許文昌 (2021). 110 年度細懸浮微粒 (PM2.5)化學成分基測及分析計畫,期末報告(定稿本),行政院環保署,台北,110 年 12 月. |