博碩士論文 111356024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:49 、訪客IP:3.149.29.192
姓名 趙大翔(Ta-Hsiang Chao)  查詢紙本館藏   畢業系所 環境工程研究所在職專班
論文名稱 應用鋁氧化物於噴砂製程之可行性研究-以A公司為例
相關論文
★ 國內汽車業表面塗裝製程VOCs減量技術探討★ 光電廠溫室效應氣體排放量推估-以龍潭廠區為例
★ 受苯、甲苯與1,2-二氯乙烷污染場址之案例研究★ TFT-LCD產業揮發性有機物(VOCs)空氣污染之減量與防制之研究
★ 膠帶製造業VOCs排放與防制效率之探討★ 校園環境噪音對國三學生煩擾度及學習成就的影響-以桃園縣某國中為例
★ 醫療業從業人員職業災害分析探討-以某區域醫院為例★ 面板製程之有害物暴露評估-以A廠為例
★ 更換低噪音工具以改善廠房噪音之研究-以汽車製造A廠為例★ 以高溫熔融還原法回收不銹鋼集塵灰中鉻與鎳之效益探討
★ 以介電質放電技術轉化四氟甲烷及六氟乙烷之初步探討★ 垃圾焚化爐空氣污染控制設備影響戴奧辛排放特性之初步探討
★ 以活性碳吸附煙道排氣中戴奧辛之初步研究★ 以低溫電漿去除揮發性有機物之研究
★ 北台灣大氣環境中戴奧辛濃度之分布特性研究★ 介電質放電技術控制小型重油鍋爐氮氧化物排放之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究針對磁控濺鍍機台實施預防性保養作業(Preventive Maintenance, PM)的探討。定期性的預防性保養作業是改善微粒污染產品最有效方法之一,本研究關注於噴砂製程。噴砂是高壓下將磨料強行推向工件表面,用以清潔或影響其表面形貌的操作。高生產效率、低消耗量、高回收性及低排放等要求,被視為噴砂磨料需要具備的特徵,鋁氧化物評估為可行的選項之一。研究也探討噴砂壓力及磨料粒度等參數對表面粗糙度的影響。實驗結果顯示,當噴砂壓力為20 psi、磨料粒度為#36使用白色氧化鋁磨料(實驗組 #2),對表面粗糙度顯著改善。該組合將預防性保養的頻率從7次延長至10次,並且維持產品外觀良率大於75%。經濟效益方面,鋁氧化物磨料的替代使用可降低採購成本58%,廢棄物處理成本下降77%,同時減少30%溫室氣體排放。現行碳化矽磨料在硬度(9.5 mohs )、熱導率及化學穩定性佳的優勢,在許多應用中仍然是首選。但存在使用時游離二氧化矽百分比含量高與廢棄物回收問題不容忽視,現行規範依其他一般廢棄物進行回收掩埋處理,處理費用高。此外,由於合法廢棄物掩埋場缺乏,不肖業者進行非法傾倒與掩埋,對自然環境與生活空間造成嚴重破壞。因此本研究旨在評估鋁氧化物(Aluminum Oxide)磨料對勞工安全、廢棄物可回收性及經濟效益方面的優勢,同時也對現存問題提出解決方案。

關鍵詞:微粒、噴砂、鋁氧化物、磁控濺鍍、預防性保養作業
摘要(英) This study investigates the implementation of preventive maintenance (PM) operations for magnetron sputtering systems. Periodic preventive maintenance is one of the most effective methods to improve particulate contamination in products, with a particular focus on the sandblasting process. Sandblasting involves forcibly projecting abrasive material onto the surface of a workpiece under high pressure to clean or alter its surface morphology. Requirements such as high production efficiency, low consumption, high recyclability, and low emissions are considered essential characteristics for sandblasting abrasives. Aluminum oxide has been evaluated as a feasible alternative. The study also explores the effects of sandblasting pressure and abrasive particle size on surface roughness. Experimental results indicate that when the sandblasting pressure is 20 psi and the abrasive particle size is #36 using white aluminum oxide abrasive (Experimental Group #2), there is a significant improvement in surface roughness. This combination extends the preventive maintenance frequency from 7 to 10 times while maintaining a product appearance yield rate greater than 75%. In terms of economic benefits, the substitution with aluminum oxide abrasive can reduce procurement costs by 58%, waste disposal costs by 77%, and greenhouse gas emissions by 30%. While silicon carbide abrasive currently remains the preferred choice in many applications due to its high hardness (9.5 Mohs), thermal conductivity, and chemical stability, issues such as high free silica content during use and waste recovery problems cannot be ignored. Current regulations require disposal of these wastes as general waste through landfill, which incurs high processing costs. Additionally, due to a lack of legal landfill sites, unscrupulous operators engage in illegal dumping and burial, causing severe damage to the natural environment and living spaces. Therefore, this study aims to evaluate the advantages of aluminum oxide abrasives in terms of worker safety, waste recyclability, and economic benefits, while also proposing solutions to existing problems.

Keywords : Particles, Sandblasting, Sputtering, Aluminum Oxide, Preventive Maintenance
關鍵字(中) ★ 微粒
★ 噴砂
★ 鋁氧化物
★ 磁控濺鍍
★ 預防性保養作業
關鍵字(英) ★ Particles
★ Sandblasting
★ Aluminum Oxide
★ Sputtering
★ Preventive Maintenance
論文目次 摘要 II
ABSTRACT III
致謝 V
目錄 VI
圖目錄 VIII
表目錄 X
第一章 研究緣起與目的 1
1-1 研究背景 1
1-2 研究內容及目的 2
1-3 研究流程 3
第二章 文獻回顧 4
2-1噴砂製程簡述 4
2-2 噴砂磨料介質(ABM)廢棄物處理 5
2-3 提高附著性能的噴砂技術 9
2-4 噴砂製程中磨料介質對附著性能的影響 11
2-5 結晶二氧化矽對健康的危害 13
2-6 噴砂產業磨料的可持續性特徵 14
2-7 使用非二氧化矽磨料在噴砂製程中曝露結晶二氧化矽含量 18
第三章 研究材料與方法 20
3-1 研究架構 20
3-2 研究項目與背景介紹 22
3-2-1 預防保養作業(PM)-噴砂製程機制 23
3-2-2 影像感測器的工作機制 24
3-2-3 光學濾光片生產機制 25
3-2-4 光學濾光片上微粒的形成 27
3-3 研究材料與分析方法 30
3-3-1實驗材料 30
3-3-2研究流程 33
3-3-3參數分析 34
第四章 結果與討論 38
4-1 鋁合金的表面特性變化 -噴砂製程 38
4-2 鋁合金的表面特性變化 - 薄膜沉積 40
4-2-1 接觸式表面粗糙度測定機量測 40
4-2-2 非接觸式三次元光學輪廓儀量測 43
4-2-3 計重秤量測 45
4-3 綜合評估 49
4-3-1 技術可行性 49
4-3-2 磨料可持續性 52
4-3-3 經濟可行性 55
第五章 結論與建議 56
5-1 結論 56
5-2 建議 56
參考文獻 58
附錄1:磨料基本特性 64
參考文獻 Achtsnick, M., Geelhoed, P. F., Hoogstrate, A. M., & Karpuschewski, B., "Modelling and evaluation of the micro abrasive blasting process", Wear, 259(1-6), 84-94 , 2005.
Alankaya, V., Celebi, U.B., "Investigation of alternative blasting process in terms of impact be haviour of blasting materials for green shipyards", International Journal of Global Warming, 7,499, 2015.
Andronikos, G., Labrakis, D., & Kaliampakos, D., "Evaluation of surface preparation alternatives for abrasive blast cleaning in ship repairing", Journal of Ship Production, 20(01), 7-15, 2004.
Appleman, B. R. "Evaluation of wet blast cleaning units" , B. R. Appleman, J. A. Bruno(Jr.), Proc. Proceedings of the SSPC Annual Symposium, Cincinnati 1985, 137-6. 1985.
Bouazaoui, L., & Li, A., "Analysis of steel/concrete interfacial shear stress by means of pull out test", International Journal of Adhesion and Adhesives, 28(3), 101-108, 2008
Buruiana, D., Bordei, M., Diaconescu, I., & Ciurea, A., "Recycling options for used sandblasting grit into road construction. In", 2011.
Borucka-Lipska, J.; Techman, M.; Skibicki, S., "Use of contaminated sand blasting grit for production of cement mortars", IOP Conf. Ser. Mater. Sci. Eng, 2019.
Chillara, N. "Abrasive blasting process optimization: Enhancing productivity, and reducing consumption and solid/hazardous wastes", Master’s Thesis, University of New Orleans, New Orleans, LA, USA, 2005.
Day, J., Huang, X., & Richards, L., "Examination of a grit-blasting process for thermal spraying using statistical methods”, Journal of Thermal Spray Technology, 14, 471-479, 2005.
Drinkwater, D.; Napier-Munn, T.; Ballantyne, G. Energy reduction through eco efficient comminution strategies. In 26th International Mineral Processing Congress, IMPC 2012: "Innovative Processing for Sustainable Growth—Conference Proceedings"; Techno writes: Pune, India, 2012.
Critchlow, G. W., & Brewis, D. M., "Review of surface pretreatments for aluminum alloys", International Journal of Adhesion and Adhesives,16(4), 255-275,1996.
Edling C., Jlrvholm B., Andersson L. and Axelson O., "Mortality and cancer incidence among workers in an abrasive manufacturing industry", British Journal of Industrial Medicine 44, 57-59, 1987.
Golaz B, Michaud V, Lavanchy S, Månson J-AE., "Design and durability of titanium adhesive joints for marine applications", International Journal of Adhesion and Adhesives, 45: 150-157, 2013.
Gopala Krishna Murthy, H. S."Evolution and present status of silicon carbide slurry recovery in silicon wire sawing", Resources, Conservation and Recycling, 104, 194-205, 2015.
Governa, M., Valentino, M., Amati, M., Visonà, I., Botta, G. C., Marcer, G., & Gemignani, C., "Biological effects of contaminated silicon carbide particles from a workstation in a plant producing abrasives", Toxicology
in Vitro, 11(3), 201-207, 1997.
Gudmundsson, J. T., & Lundin, D., "Introduction to magnetron sputtering. In High Power Impulse Magnetron Sputtering", pp. 1-48, 2020.
Guo, C. Y., Hong Tang, A. T., Hon Tsoi, J. K., & Matinlinna, J. P., "Effects of different blasting materials on charge generation and decay on titanium surface after sandblasting", Journal of the Mechanical Behavior of Biomedical Materials, 32, 145-154, 2014.
Hajji, Y., Entemeyer, D., Serri, J., Yahiaoui, M., Tazibt, A., Grosdidier, T., "High
pressure cryogenic nitrogen jet for clean coating removal: experimental study of polyamide ablation”, Materials Science Forum Vol. 941, 1651–1655, 2018.
Hallmann, L., Ulmer, P., Reusser, E., & Hämmerle, C. H. F., "Effect of blasting pressure, abrasive particle size and grade on phase transformation and morphological change of dental zirconia surface. Surface and Coatings Technology", 206(19-20), 4293-4302, 2012.
Heitbrink WA. "Control technology for crystalline silica exposures in construction: wet abrasive blasting", Cincinnati, OH: NIOSH. NIOSH (DHHS) Report ECTB 247-11, 1999.
Infante-Rivard C., Dufresne A., Armstrong B., Bouchard P.and Theriault G. ., " Cohort study of silicon carbide production workers", American Journal of Epidemiology 140, 1009-1015, 1994.
Kambham, K., Sangameswaran, S., Datar, S. R., & Kura, B., " Copper slag: optimization of productivity and consumption for cleaner production in dry abrasive blasting", Journal of Cleaner Production, 15(5), 465-473, 2007.
Khan, A. A., Al Kheraif, A. A., Alhijji, S. M., & Matinlinna, J. P., "Effect of grit-blasting air pressure on adhesion strength of resin to titanium " ,International Journal of Adhesion and Adhesives, 65, 41- 46, 2016.
Kohli, R., "Chapter 4 - Applications of solid carbon dioxide (Dry Ice) pellet blasting for removal of surface contaminants. In R. Kohli & K. L. Mittal (Eds.), Developments in Surface Contamination and Cleaning: Applications of Cleaning Techniques (pp. 117-169). Elsevier, 2019.
Kura, B., Kambham, K., Sangameswaran, S., & Potana, S ., "Atmospheric particulate emissions from dry abrasive blasting using coal slag", Journal of the Air & Waste Management Association, 56(8), 1205-1215, 2006.
Li, J., Li, Y., Huang, M., Xiang, Y., & Liao, Y., "Improvement of aluminum lithium alloy adhesion performance based on sandblasting techniques", International Journal of Adhesion and Adhesives, 84, 307-316, 2018.
Li, J., Lin, Y., Wang, F., Shi, J., Sun, J., Ban, B., Liu, G., & Chen, J., "Progress in recovery and recycling of kerf loss silicon waste in photovoltaic industry. Separation and Purification Technology", 254, 2021.
Madl, A. K., Donovan, E. P., Gaffney, S. H., McKinley, M. A., Moody, E. C., Henshaw, J. L., & Paustenbach, D. J., "State-of-the-science review of the occupational health hazards of crystalline silica in abrasive blasting operations and related requirements for respiratory protection ", Journal of Toxicology and Environmental Health, Part B, 11(7), 548-608, 2008.
Merewether, E. R. A., "The risk of silicosis in sand-blasters”, Tubercle, 17(9), 385-391, 1936.
Myrsell, J. "Effect of shot blasting on process oxidized-stainless steel–morphology, chemistry and pickling performance", Available online: http://kth.diva-portal.org/smash/record.jsf?pid=diva2%3A795762&dswid=-7440 , 2014.
Njuhovic, E., Bräu, M., Wolff-Fabris, F., Starzynski, K., & Altstädt, V., "Identification of interface failure mechanisms of metallized glass fibre reinforced composites using acoustic emission analysis”, Composites Part B: Engineering, 66, 443-452, 2014.
Packham, D. E., "Surface energy, surface topography and adhesion", International Journal of Adhesion and Adhesives, 23(6), 437- 448, 2003.
Pan, Y., Wu, G., Huang, Z., Li, M., Ji, S., & Zhang, Z., "Effect of surface roughness on interlaminar peel and shear strength of CFRP/Mg laminates", International Journal of Adhesion and Adhesive", 79 , 1-7, 2017.
Profitt-Henry A., " Silica overexposure in sandblasting”, Applied Occupational and Environmental Hygiene ; 15: 537–9, 2000.
Qi, C., Weinell, C. E., Dam-Johansen, K., & Wu, H A., "Review of blasting waste generation and management in the ship repair industry”, Journal of Environmental Management , 300, 113714, 2021.
Qi, D. . Chapter 8 - Treatment of wastewater, off-gas, and waste solid. In D. Qi (Ed.), Hydrometallurgy of Rare Earths (pp. 743-777). Elsevier, 2018.
Radnoff, D. L., & Kutz, M. K., "Exposure to crystalline silica in abrasive blasting operations where silica and non-silica abrasives are used ", The Annals of Occupational Hygiene, 58(1), 19-27, 2014.
Rappaport, S. M., Goldberg, M., Susi, P. A. M., & Herrick, Robert F., "Excessive exposure to silica in the US construction industry", The Annals of Occupational Hygiene, 47(2), 111-122, 2003.
Rudawska, A., Danczak, I., Müller, M., & Valasek, P., "The effect of sandblasting on surface properties for adhesion", International Journal of Adhesion and Adhesives, 70, 176-190, 2016.
Spur, G., Uhlmann, E., & Elbing, F., " Dry-ice blasting for cleaning: process, optimization and application", Wear, 233-235, 402-411, 1999.
Sun, Y., Xie, Z., Li, J. et al., " Assessment of toxicity of heavy metal contaminated soils by the toxicity characteristic leaching procedure", Environmental Geochemistry and Health, 28, 73–78 ,2006.
Sutrisno, W., Wulandari, K. D., Abidin, M. Z., & Rizal, M. N., "Properties of concrete mortar incorporating recycle pulverized sandblasting waste as additives". Heliyon, 10(4), e25623, 2024.
Sykes J.M. Surface treatment for steel. In: Brewis DM. Editor., "Surface analysis and pretreatment of plastics and metals", London. Applied Science Publishers; 1982, p.153-74.
Wang, D., Chen, X., Hua, Y., Wang, Z., Liu, C., Wang, Z., & Qian, G., "Improving flotation separation of micro Si/SiC particles from silicon sawing waste by surface hydrophilic modification", Minerals Engineering, 191, 107962, 2023.
Wright, A. W. "On a new process for the electrical deposition of metals, and for constructing metal-covered glass specula", American Journal of Science, s3-14(81), 169–178, 1877.
Wright, L. A., Kemp, S., & Williams, I., "Carbon foot printing’: towards a universally accepted definition. Carbon Management", 2(1), 61-72, 2014.
Xing, P., Ma, B., Wang, C., Wang, L., & Chen, Y., "A simple and effective process for recycling zinc-rich paint residue", Waste Management, 76, 234-241, 2018.
Yang, C. L., & Kravets, G ., "Removal of chromium from abrasive blast media by leaching and electrochemical precipitation", Journal of the Air & Waste Management Association, 50(4), 536-542, 2000.
Yang, H. L., Liu, I. T., Liu, C. E., Hsu, H. P., & Lan, C. W., "Recycling and reuse of kerf-loss silicon from diamond wire sawing for photovoltaic industry", Waste Management, 84, 204-210, 2019.
Zulkarnain, I., Mohamad Kassim, N. A., Syakir, M. I., Abdul Rahman, A., Md Yusuff, M. S., Mohd Yusop, R., & Keat, N. O. ., "Sustainability-based characteristics of abrasives in blasting industry", Sustainability, 13(15), 2021.
環境部,「我國國家溫室氣體排放清冊報告(2023年版)」,2023。
環境部資源循環署,「廢棄物及再生資源代碼表」,2023。
李珣琦、陳偉聖,「廢矽泥回收效率研究之探討」,工業污染防治 第 141 期 (Nov. 2017) 45,國立成功大學,2017。
陳成裕、李聯雄,「建立職場結晶型游離二氧化矽及奈米微粒容許暴露標準建議值探討研究」,111年研究計畫,勞動部勞動及職業安全衛生研究所,2022。
楊家福,「切割矽泥回收矽的應用研究」,博士論文, 國立臺灣大學. 2017。
蔡正國,「利用廢面板玻璃製備奈米孔洞材料應用於水中重金屬去除及硼回收之研究」,博士論文,國立清華大學,2019。
指導教授 張木彬 審核日期 2024-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明