博碩士論文 111356009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:47 、訪客IP:18.117.184.236
姓名 郭玉佳(Yu-Chia Kuo)  查詢紙本館藏   畢業系所 環境工程研究所在職專班
論文名稱 應用電漿觸媒系統分解氨氣產氫之效率探討
(Hydrogen Production from Ammonia Decomposition via Plasma Catalysis)
相關論文
★ 國內汽車業表面塗裝製程VOCs減量技術探討★ 光電廠溫室效應氣體排放量推估-以龍潭廠區為例
★ 受苯、甲苯與1,2-二氯乙烷污染場址之案例研究★ TFT-LCD產業揮發性有機物(VOCs)空氣污染之減量與防制之研究
★ 膠帶製造業VOCs排放與防制效率之探討★ 校園環境噪音對國三學生煩擾度及學習成就的影響-以桃園縣某國中為例
★ 醫療業從業人員職業災害分析探討-以某區域醫院為例★ 面板製程之有害物暴露評估-以A廠為例
★ 更換低噪音工具以改善廠房噪音之研究-以汽車製造A廠為例★ 以高溫熔融還原法回收不銹鋼集塵灰中鉻與鎳之效益探討
★ 以介電質放電技術轉化四氟甲烷及六氟乙烷之初步探討★ 垃圾焚化爐空氣污染控制設備影響戴奧辛排放特性之初步探討
★ 以活性碳吸附煙道排氣中戴奧辛之初步研究★ 以低溫電漿去除揮發性有機物之研究
★ 北台灣大氣環境中戴奧辛濃度之分布特性研究★ 介電質放電技術控制小型重油鍋爐氮氧化物排放之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-7-31以後開放)
摘要(中) 氣候變遷對環境造成之影響不容輕忽,近年來造成世界各地乾旱、熱浪及暴雨發生情況頻率暴增,透過降低溫室氣體的排放,可減緩地球暖化,降低極端氣候的發生。氫為潔淨燃料更具有零碳排能源載體潛力,分解氨氣產生氫氣並導入燃煤或燃氣發電系統,部分取代煤及天然氣以提高發電效率是達到淨零碳排的重要手段之一。本研究以含浸法製備 10 wt% Fe-Ni/MgO 及 Ru/MgO兩種觸媒,研究主軸分為兩個部分,一為熱催化系統之效率探討,另一則是利用觸媒結合電漿進行氨氣分解生產潔淨能源氫氣,藉由改變參數(空間流速、濃度及操作電壓等)探討對氨分解效率之影響。實驗結果顯示使用電漿+Ru/MgO觸媒系統之氨分解率隨空間流速先減而後增,與純電漿系統及電漿+Fe-Ni/MgO觸媒之趨勢不同,在空間流速為1800 mL/g.h時,電漿+Ru/MgO觸媒有最大之氨分解率(75.2%),產氫能量效率隨著電壓增加而上升,為兩種系統中唯一呈向上趨勢者。在高操作電壓(≧12 kV)且空間流速為7200 mL/g.h時,使用電漿結合觸媒系統之氨分解效率較純電漿系統佳,可看到電漿結合觸媒之協同效應,且在高操作電壓下添加觸媒之系統有較好之產氫能量效率。就空間流速而言,在低操作電壓下,氣體停留時間越長(空間流速越低),純電漿系統之產氫能量效率優於電漿結合觸媒系統,而在空間流速為7200 mL/g.h下電漿結合觸媒系統之產氫能量效率 > 純電漿系統之產氫能量效率。就氨氣進樣濃度而言,在高操作電壓下,可發現電漿結合觸媒系統有進流濃度為20%之產氫能量效率 > 30%之產氫能量效率 > 10%之產氫能量效率之趨勢。本研究證實電漿觸媒可有效分解氨以生成潔淨的氫氣,深具發展潛力。
摘要(英) The impact of climate change on the environment cannot be ignored. In recent years, the frequency of droughts, heatwaves, and heavy rains has surged worldwide. Reducing greenhouse gas emissions can mitigate the global warming and decrease the occurrence of extreme weather, highlighting the urgency of carbon reduction. Hydrogen is a clean fuel with potential as a zero-carbon energy carrier. Decomposing ammonia to produce hydrogen and integrating it into coal on gas power systems to partially replace coal and natural gas can improve power generation efficiency, making it a key strategy for countries to achieve net-zero carbon emissions. This study involves the preparation of 10 wt% Fe-Ni/MgO and Ru/MgO catalysts via impregnation method. It focuses on two main parts: application of the thermal system and the plasma-catalyst system for ammonia decomposition to produce clean hydrogen. The study explores the effects of operating parameters (space velocity, concentration, and operating voltage) on ammonia decomposition efficiency. The experimental results show that the ammonia decomposition rate achieved with plasma + Ru/MgO catalyst system first decreases and then increases with space velocity, a trend different from that of the pure plasma system and the plasma + Fe-Ni/MgO catalyst. At a space velocity of 1800 mL/g·h, the plasma + Ru/MgO catalyst system achieves the highest ammonia decomposition rate (75.2%). The hydrogen energy efficiency increases with increasing voltage, showing a unique upward trend among the systems. At high operating voltages (≥12 kV) and a space velocity of 7200 mL/g·h, the conversion of NH3 achieved with plasma-catalyst system surpasses that of the pure plasma system, demonstrating the synergistic effect of the plasma-catalyst combination. At high operating voltages, the system with the added catalyst exhibits better hydrogen energy efficiency. In terms of space velocity, at low operating voltages, the hydrogen energy efficiency achieved with pure plasma system is superior to that of the plasma-catalyst system with longer gas residence time (lower space velocity). At a space velocity of 7200 mL/g·h, the hydrogen energy efficiency of the plasma-catalyst system exceeds that of the pure plasma system. Regarding ammonia feed concentration, at high operating voltages, the plasma-catalyst system shows a trend with the hydrogen energy efficiency at a 20% feed concentration > 30% > 10%. This study has demonstrated that combined plasma catalysis is effective in decomposing ammonia to generate hydrogen and has the potential for industrial application.
關鍵字(中) ★ 氨氣
★ 氫氣
★ 清潔能源
★ 電漿催化
★ 觸媒
關鍵字(英) ★ ammonia
★ hydrogen
★ clean energy
★ plasma catalysis
★ catalyst
論文目次 摘要-i
Abstract-ii
致謝-iv
目錄-v
表目錄-viii
圖目錄-ix
第一章 前言-1
1.1研究緣起-1
1.2研究目的-2
第二章 文獻回顧-3
2.1氫能簡介-3
2.2產氫技術簡介-5
2.3氨氣特性與介紹-9
2.3.1氨氣特性及來源-9
2.4 以觸媒裂解氨氣產氫技術發展-12
2.4.1氨氣分解反應-12
2.4.2氨裂解產氫觸媒-13
2.4.3以觸媒裂解氨氣產氫技術-14
2.5以電漿觸媒系統分解氨產氫技術發展-16
2.5.1電漿反應-16
2.5.2電漿種類形式-18
2.5.3電漿結合觸媒之協同作用-20
2.5.4以電漿觸媒系統分解氨產氫技術-21
第三章 研究方法-25
3.1研究流程與架構-25
3.2分解氨產氫系統-26
3.2.1實驗系統-26
3.2.2檢量線製作-31
3.2.3氨氣分解率及氫氣產率計算-31
3.3實驗預備-33
3.3.1觸媒材料選擇-33
3.3.2觸媒材料製備-33
3.3.3觸媒材料特性分析-34
第四章 結果與討論-37
4.1觸媒基本特性分析-37
4.1.2高解析度比表面積分析儀(BET)分析結果-37
4.1.3掃描式電子顯微鏡/能量散射光譜儀(SEM-EDS)分析結果-39
4.1.4X射線螢光光譜儀(XRF)分析結果-39
4.2氨分解熱催化反應-40
4.2.1溫度對氨分解效率之影響-40
4.2.2觸媒對氨分解效率之長效性測試-42
4.2.3空間流速對氨分解效率之影響-43
4.3電漿對氨分解反應之影響-45
4.3.1觸媒添加對電漿分解氨及產氫效率之影響-45
4.3.2電漿系統中產氫能量效率比較-46
4.4空間流速對氨分解反應之影響-49
4.4.1空間流速對氨分解及產氫效率之影響 49
4.4.2空間流速對氨分解反應產氫能量效率之影響-58
4.5協同效應-60
4.6進流濃度對氨分解反應之影響-62
4.6.1進流濃度對氨分解效率之影響-62
4.6.2進樣濃度對氨分解反應產氫能量效率之影響-66
4.7產物分析-68
第五章 結論與建議-70
5.1結論-70
5.2建議-71
參考文獻-72
參考文獻 Andersen, J. A., Christensen, J. M., Østberg, M., Bogaerts, A., Jensen, A. D. (2022). Plasma-catalytic ammonia decomposition using a packed-bed dielectric barrier discharge reactor. International Journal of Hydrogen Energy, 47(75), 32081-32091. doi:10.1016/j.ijhydene.2022.07.102
Amenaghawon, A. N., Anyalewechi, C. L., Okieimen, C. O., Kusuma, H. S. (2021) Biomass pyrolysis technologies for value-added products: a state-of-the-art review. Environment, Development and Sustainability, 23, 14324-14378.
Aramendı ́a, M. A., Benı ́tez, J. A., Victoriano Borau, V., Jime ́nez, C., Marinas, J. M., Ruiz, J. R., Urbano, F. (1998). Study of MgO and PtMgO Systems by XRD, TPR, and 1HMAS NMR. Langmuir, 15, 1192-1197.
Awad, O. I., Zhou, B., Kadirgama, K., Chen, Z., Mohammed, M. N. (2024). Nonthermal plasma-assisted catalysis NH3 decomposition for COx-free H2 production: A review. International Journal of Hydrogen Energy, 56, 452-470. doi:10.1016/j.ijhydene.2023.12.166
Bartholomew, C. H. (2001). Mechanisms of catalyst deactivation. Applied Catalysis A: General, 212, 17–60.
Cha, J., Lee, T., Lee, Y. J., Jeong, H., Jo, Y. S., Kim, Y., Nam, S. W., Han, J., Lee, K. B., Yoon, C. W., Sohn, H. (2021). Highly monodisperse sub-nanometer and nanometer Ru particles confined in alkali-exchanged zeolite Y for ammonia decomposition. Applied Catalysis B: Environmental, 283. doi:10.1016/j.apcatb.2020.119627
Chen, C., Fan, X., Zhou, C., Lin, L., Luo, Y., Au, C., Cai, G., Wang, X., Jiang, L. (2023). Hydrogen production from ammonia decomposition over Ni/CeO2 catalyst: Effect of CeO2 morphology. Journal of Rare Earths, 41(7), 1014-1021. doi:10.1016/j.jre.2022.05.001
Choudhary, T. V., Sivadinarayana, C., & Goodman, D. W. (2001). Catalytic ammonia decomposition: COx-free hydrogen production for fuel cell applications. Catalysis Letters, 72(3), 197-201.
El-Shafie, M., Kambara, S., Hayakawa, Y. (2021). Plasma-enhanced catalytic ammonia decomposition over ruthenium (Ru/Al2O3) and soda glass (SiO2) materials. Journal of the Energy Institute, 99, 145-153. doi:10.1016/j.joei.2021.09.001
Ertl, G. (2008). Reactions at surfaces: from atoms to complexity (Nobel Lecture). Angewandte Chemie International Edition, 47(19), 3524-3535. doi:10.1002/anie.200800480
Gao, Y., Hu, E., Yi, Y., Yin, G., Huang, Z. (2023). Plasma-assisted low temperature ammonia decomposition on 3d transition metal (Fe, Co and Ni) doped CeO2 catalysts: Synergetic effect of morphology and co-doping. Fuel Processing Technology, 244. doi:10.1016/j.fuproc.2023.107695
Ghavam, S., Vahdati, M., Wilson, I. G., & Styring, P. (2021). Sustainable ammonia production processes. Frontiers in Energy Research, 9, 580808.
Herrera, F. A., Brown, G. H., Barboun, P., Turan, N., Mehta, P., Schneider, W. F., Hicks, J. C., Go, D. B. (2019). The impact of transition metal catalysts on macroscopic dielectric barrier discharge (DBD) characteristics in an ammonia synthesis plasma catalysis reactor. Journal of Physics D: Applied Physics, 52(22). doi:10.1088/1361-6463/ab0c58
Huang, C., Yu, Y., Yang, J., Yan, Y., Wang, D., Hu, F., Wang, X., Zhang, R., Feng, G. (2019). Ru/La2O3 catalyst for ammonia decomposition to hydrogen. Applied Surface Science, 476, 928-936. doi:10.1016/j.apsusc.2019.01.112
Jiao, F., Xu, B. (2019). Electrochemical ammonia synthesis and ammonia fuel cells. Advanced Materials, 31(31), e1805173. doi:10.1002/adma.201805173
Jimena, I. V., Korayem, A., Tsatsaronis, G., Morosuk, T. (2023). “Colors” of hydrogen: Definitions and carbon intensity. Energy Conversion and Management, 291. doi:10.1016/j.enconman.2023.117294
Kim, A.R., Cha, J., Kim, J. S., Ahn, C.I., Kim, Y., Jeong, H., Choi, S. H., Nam, S. W., Yoon, C. W., Sohn, H. (2023). Hydrogen production from ammonia decomposition over Ru-rich surface on La2O2CO3-Al2O3 catalyst beads. Catalysis Today, 411-412. doi:10.1016/j.cattod.2022.08.009
Karkach, B., Tahiri, M., Haibi, A., Bouya, M., Kifani, S . M. (2023) Review on fast pyrolysis of biomass for biofuel production from date palm. Applied Sciences, 13(18), 10463.
Lan, R., Irvine, J. T., Tao, S. (2013). Synthesis of ammonia directly from air and water at ambient temperature and pressure. Scientific Reports, 3, 1145. doi:10.1038/srep01145
Lee, H., Lee, D. H., Song, Y. H., Choi, W. C., Park, Y. K., Kim, D. H. (2015). Synergistic effect of non-thermal plasma–catalysis hybrid system on methane complete oxidation over Pd-based catalysts. Chemical Engineering Journal, 259, 761-770. doi:10.1016/j.cej.2014.07.128
Li, G., Zhang, H., Yu, X., Lei, Z., Yin, F., He, X. (2022). Highly efficient Co/NC catalyst derived from ZIF-67 for hydrogen generation through ammonia decomposition. International Journal of Hydrogen Energy, 47(26), 12882-12892. doi:10.1016/j.ijhydene.2022.02.046
Lu, S., Chen, L., Du, C., Sun, X., Li, X., Yan, J. (2014). Experimental study of hydrogen production from reforming of methane and ammonia assisted by Laval nozzle arc discharge. International Journal of Hydrogen Energy, 39(35), 19990-19999. doi:10.1016/j.ijhydene.2014.10.011
MacFarlane, D. R., Cherepanov, P. V., Choi, J., Suryanto, B. H. R., Hodgetts, R. Y., Bakker, J. M., Ferrero Vallana, F. M.,Simonov, A. N. (2020). A roadmap to the ammonia economy. Joule, 4(6), 1186-1205. doi:10.1016/j.joule.2020.04.004
Martinu, L., Zabeida, O., Klemberg-S, J. E. (2010). Plasma-enhanced chemical vapor deposition of functional coatings. Wiliam Andrew, Chapter 9, 392-465
McKinsey & Company (2023). Global Energy Perspective 2023: Hydrogen outlook. Website: https://www.mckinsey.com/industries/oil-and-gas/our-insights/global-energy-perspective-2023-hydrogen-outlook.
Meng, S., Li, S., Sun, S., Bogaerts, A., Liu, Y., Yi, Y. (2024). NH3 decomposition for H2 production by thermal and plasma catalysis using bimetallic catalysts. Chemical Engineering Science, 283. doi:10.1016/j.ces.2023.119449
Młotek, M., Perron, M., & Krawczyk, K. (2021). Ammonia decomposition in a gliding discharge plasma. Energy Technology, 9(12), 2100677.
Mostafa, E. S., Kambara, S. (2023). Recent advances in ammonia synthesis technologies: Toward future zero carbon emissions. International Journal of Hydrogen Energy, 48(30), 11237-11273. doi:10.1016/j.ijhydene.2022.09.061
Mukherjee, S., Devaguptapu, S. V., Sviripa, A., Lund, C-R. F., Wu, G. (2018). Low-temperature ammonia decomposition catalysts for hydrogen generation. Applied Catalysis B: Environmental, 226(15), 162-181.
Nakamura, I., Fujitani, T. (2016). Role of metal oxide supports in NH3 decomposition over Ni catalysts. Applied Catalysis A: General, 524, 45-49. doi:10.1016/j.apcata.2016.05.020
Pinzón, M., Avilés-García, O., de la Osa, A. R., de Lucas-Consuegra, A., Sánchez, P., Romero, A. (2022). New catalysts based on reduced graphene oxide for hydrogen production from ammonia decomposition. Sustainable Chemistry and Pharmacy, 25. doi:10.1016/j.scp.2022.100615
Schüth, F., Palkovits, R., Schlögl, R., Su, D. S. (2012). Ammonia as a possible element in an energy infrastructure: catalysts for ammonia decomposition Energy & Environmental Science, 5(4), 6278-6289. doi:10.1039/c2ee02865d
Wang, Z. Q., Cai, Z. F., Wei, Z. (2019). Highly active ruthenium catalyst supported on barium hexaaluminate for ammonia decomposition to COx-free hydrogen. ACS Sustainable Chemistry & Engineering, 7(9), 8226-8235.
Wang, L., Yi, Y. H., Zhao, Y., Zhang, R., Zhang, J., Guo, H. (2015). NH3 decomposition for H2 generation: effects of cheap metals and supports on plasma–catalyst synergy. ACS Catalysis, 5(7), 4167-4174. doi:10.1021/acscatal.5b00728
Wang, Z. J., Zhang, H. Z., Ye, Z. B., He, G., Liao, C., Deng, J., Lei, G., Zheng, G., Zhang, K., Gou, F., Mao, X. (2024). H2 production from ammonia decomposition with Mo2N catalyst driven by dielectric barrier discharge plasma. International Journal of Hydrogen Energy, 49, 1375-1385. doi:10.1016/j.ijhydene.2023.06.173
Wappler, M., Unguder, D., Lu, X., Ohlmeyer, H., Teschke, H., Lueke, W. (2022). Building the green hydrogen market – Current state and outlook on green hydrogen demand and electrolyzer manufacturing. International Journal of Hydrogen Energy, 47(79), 33551-33570. doi:10.1016/j.ijhydene.2022.07.253
Yi, Y., Wang, L., Guo, Y., Sun, S., Guo, H. (2018). Plasma‐assisted ammonia decomposition over Fe–Ni alloy catalysts for COx‐Free hydrogen. AIChE Journal, 65(2), 691-701. doi:10.1002/aic.16479
Yin, S. F., Xu, B. Q., Zhou, X. P., Au, C. T. (2004). A mini-review on ammonia decomposition catalysts for on-site generation of hydrogen for fuel cell applications. Applied Catalysis A: General, 277(1-2), 1-9. doi:10.1016/j.apcata.2004.09.020
Zhang, X., Cha, M. S. (2023). Ammonia cracking for hydrogen production using a microwave argon plasma jet. Journal of Physics D: Applied Physics, 57(6). doi:10.1088/1361-6463/ad0988
Zhu, X., Liu, J., Hu, X., Zhou, Z., Li, X., Wang, W., Wu, R., Tu, X. (2022). Plasma-catalytic synthesis of ammonia over Ru-based catalysts: Insights into the support effect. Journal of the Energy Institute, 102, 240-246. doi:10.1016/j.joei.2022.02.014
行政院環境保護署,溫室氣體排放統計(2022)
經濟部能源局,國際再生能源發展趨勢與政策(2021)
經濟部技術處,全球氫氣生產方式的發展與趨勢(2021)
德國在臺協會,再生能源的拓展(2020)
風險社會與政策研究中心,台灣氫能發展實務(2022)
經濟部能源署,大型氫氣儲存技術簡介(2022)
經濟部,臺灣 2050 淨零轉型「氫能」關鍵戰略行動計畫(2023)
指導教授 張木彬(Moo-Been Chang) 審核日期 2024-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明