博碩士論文 105356007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:41 、訪客IP:3.131.37.82
姓名 陳紘彬(Hung-Pin Chen)  查詢紙本館藏   畢業系所 環境工程研究所在職專班
論文名稱 固體再生燃料應用於鍋爐燃燒 之可行性評估研究
(Feasibility of Solid Recovered Fuel during Boiler Combustion Process)
相關論文
★ 大學生對綠建材認知與態度之研究★ 塑膠廢棄物催化裂解產能效率與裂解油物種特性變化之評估研究
★ 應用高壓蒸氣技術製備抗菌輕質材料及其 特性評估研究★ 加速碳酸鹽反應對都市垃圾焚化灰渣捕捉二氧化碳之可行性評估研究
★ 應用無機聚合物技術探討都市垃圾焚化飛灰 無害化之可行性研究★ 動畫與教學介入對桃園市某國小六年級學童環境行動影響之研究
★ 下水污泥與工業區廢水污泥共同蒸氣氣化產能效率與重金屬分佈特性之研究★ 應用自製催化劑評估廢車破碎殘餘物氣化產能效率及污染物排放特性
★ 應用熱裂解技術評估廢車破碎殘餘物轉換能源效率及重金屬排放特性★ 應用揮發性有機物自動採樣技術評估工業區異味污染物來源及指紋之可行性研究
★ 評估傳統濕式洗滌塔對印刷電路板防焊製程之揮發性有機氣體去除效率之研究★ 污水處理廠逸散微粒之物理、化學及生物特性分析
★ 應用熱氣清淨系統提升稻稈氣化過程合成氣品質及污染物去除之可行性研究★ 台北都會區PM1.0微粒物理特徵描述與含碳氣膠來源分析
★ 以無人飛行載具(UAV)平台探討空氣污染物之垂直分佈特徵及搭載之氣膠儀器性能評估★ 應用高溫淨化技術提昇廢水污泥與沼渣共氣化產能效率及 重金屬去除之評估研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-8-15以後開放)
摘要(中) 本研究使用纖維、塑膠及紙渣等,三種不同來源種類製成的固體再生燃料(Solid Recovered Fuel, SRF)於流體化床鍋爐進行混燒試驗。研究結果顯示,使用SRF對於鍋爐的燃料投料控制、蒸汽輸出及鍋爐溫度操控,都符合鍋爐穩定操作之條件,且鍋爐熱效率都可達80%以上。根據SRF之元素分析結果顯示,其氮含量及氯含量皆高於燃煤,而硫含量低於燃煤。在混燒結果中,鍋爐的脫硫系統及脫硝系統,去除效率皆高於95%以上,煙囪排氣中SO2、NOX及HCl皆可符合法規標準。
混燒SRF鍋爐衍生的飛灰及底渣分析結果顯示,毒性特性溶出程序(TCLP)各金屬溶出濃度皆低於法規標準的20%以下;SRF飛灰及底渣的戴奧辛及呋喃毒性當量濃度,分別介於4.41~183.73 pg I-TEQ/g及0.064~0.9 pg I-TEQ/g,混燒SRF有增加衍生飛灰及底渣生成PCDD/Fs的情況且生成情況飛灰高於底渣。因混燒SRF產生灰渣僅占灰渣總量的2.75% ~ 10%,主要灰渣成分仍受燃煤、輪胎衍生燃料(Tire derived fuel, TDF)及石灰石影響,故混燒SRF的飛灰結渣指數及底渣的積灰指數與無使用SRF情況相較,無明顯升高之情況。
蒸汽成本方面,混燒三種SRF都能顯著降低蒸氣成本,使用塑膠、塑膠與紙渣製成的SRF,蒸氣成本下降至無使用SRF情況的65%。本次研究使用的SRF,各SRF製造廠皆無相關品質管控標準及檢測數據,導致同批次的物料外觀及檢測值差異甚大,造成鍋爐混燒SRF的石灰石用量明顯增加,致使混燒SRF的灰渣處理費用及藥劑費用分別相較無混燒SRF情況增加49%及91%。整體而言,後續SRF製造廠的收料與產品的品質管控機制較趨嚴謹,並產出品質穩定的SRF供鍋爐業者使用,將大可降低用藥成本與鍋爐異常操作受損之風險,進而提升SRF後續推廣與應用之發展潛力。
摘要(英) This research investigates using three different sources of Solid Recovered Fuel (SRF)—fiber, plastic, and paper residue—in a fluidized bed boiler for blending tests. The results demonstrate that SRF can be effectively used for boiler fuel charging control, steam output, and temperature regulation, all supporting stable boiler operation. The boiler′s thermal efficiency can exceed 80% with SRF usage. Elemental analyses of the SRFs reveal higher nitrogen and chlorine contents than coal, while the sulfur content is lower. The desulphurization and denitrification systems of the boiler achieve removal efficiencies of over 95% when using SRF, ensuring that emissions of SO2, NOX, and HCl in the stack exhaust meet regulatory standards.
Analysis of fly ash and bottom slag from the SRF-co-fired boiler indicates that the concentrations of metals in the Toxicity Characteristic Leaching Procedure (TCLP) are below 20% of regulatory limits. However, the co-firing of SRF increases the generation of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in fly ash and bottom slag, with fly ash showing higher levels than bottom slag. These compounds are known to be highly toxic and persistent in the environment, which raises concerns about the environmental impact of SRF co-firing. The combustion of SRF contributes only 2.75% to 10% of the total ash, with the main composition of the ash still influenced by coal, Tire-Derived Fuel (TDF), and limestone. Consequently, there is no significant increase in the fly ash slagging index and bottom slag accumulation index compared to scenarios without SRF.
From an economic perspective, the co-firing of all three SRF types can lead to significant cost savings in steam production. For instance, the costs for SRFs made from plastic and plastic-plus-paper residues can drop to 65% of those without SRF. This promising aspect of SRF usage is a key point to consider. However, it′s important to note that the SRFs used in this research lack relevant quality control standards and consistent test data from manufacturers, leading to significant variability in material appearance and test values within the same batch. The use of blended SRF in boilers also results in a marked increase in limestone usage, leading to a 49% rise in ash treatment costs and a 91% increase in pharmaceutical costs compared to scenarios without SRF. The study strongly recommends the establishment of a robust quality control mechanism for SRF materials and products by government agencies. This measure is not just important, it′s crucial in ensuring the production of SRFs with consistent and stable quality. This, in turn, can help reduce medication costs for boiler operators and minimize the risk of damage from abnormal boiler operation. The potential impact of this recommendation on the industry underscores the significance of this research.
關鍵字(中) ★ 固體再生燃料
★ 廢塑膠
★ 廢纖維
★ 鍋爐
關鍵字(英) ★ Solid recovered fuel
★ waste plastics
★ waste fiber
★ boiler
論文目次 摘要 I
ABSTRACT III
致謝 V
目錄 VII
圖目錄 IX
表目錄 XI
第一章 前言 1
第二章 文獻回顧 3
2-1 固體再生燃料之發展與應用現況 3
2-2 國內固體再生燃料之發展現況 8
2-3 固體再生燃料燃燒之污染排放特性 13
第三章 研究材料與方法 19
3-1 研究材料 20
3-2 研究設備 23
3-3 研究方法 26
3-4 分析方法 28
3-4-1 燃料分析項目 28
3-4-2 鍋爐穩定性評估 32
3-4-3 鍋爐效率分析 33
3-4-4 混燒SRF之蒸汽產出成本分析 34
3-4-5 污染物排放特性分析 35
第四章 結果與討論 41
4-1 研究材料基本特性分析 41
4-2 混燒SRF鍋爐系統穩定度分析 43
4-2-1 SRF投料穩定性評估 43
4-2-2 混燒SRF鍋爐操作溫度與蒸汽供應穩定度評估 45
4-3 混燒SRF鍋爐效率分析 49
4-4 混燒SRF鍋爐排放空氣污染物分析 54
4-5 混燒SRF鍋爐飛灰與底渣成分分析 62
4-6 混燒SRF鍋爐蒸汽成本分析 71
第五章 結論與建議 73
5-1 結論 73
5-2 建議 74
參考文獻 75
附 錄 83
參考文獻 Agraniotis Michalis, Nikolopoulos Nikos, Nikolopoulos Aris, Grammelis Panagiotis, Kakaras Emmanuel. (2010). Numerical investigation of Solid Recovered Fuels’ co-firing with brown coal in large scale boilers – Evaluation of different co-combustion modes. Fuel, 89, 3693-3709.
Balampanis D.E., Pollard S.J.T., Simms N., Longhurst P., Coulon F., Villa R. (2010). Residues characterisation from the fluidised bed combustion of East London’s solid recovered fuel. Waste Management, 30, 1318-1324.
Basu Prabir, Butler James, Leon Mathias A. (2011). Biomass co-firing options on the emission reduction and electricity generation costs in coal-fired power plants. Renewable Energy, 36, 282-288.
Chae Jong Seong, Kim Seok Wan, Ohm Tae In. (2020). Combustion Characteristics of Solid Refuse Fuels from DifferentWaste Sources. Renewable Materials, 8, 789-799.
Chyang Chien-Song, Han Yun-Long, Wu Li-Wei, Wan Hou-Peng, Lee Hom-Ti, Chang Ying-Hsi. (2010). An investigation on pollutant emissions from co-firing of RDF and coal. Waste Managemen, 30, 1334-1340.
Davidssona K.O., Åmanda L.E., Steenarib B.M., Elleda A.-L., Eskilssonc D., Lecknera B. (2008). Countermeasures against alkali-related problems during combustion of biomass in a circulating fluidized bed boiler. Chemical Engineering Science, 63, 5314-5329.
Demirbas Ayhan. (2005). Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues. Progress in Energy and Combustion Science, 31, 171-192.
Garg A., Smith R., Hill D., Longhurst P.J., Pollard S.J.T., Simms N.J. (2009). NAn integrated appraisal of energy recovery options in the United Kingdom using solid recovered fuel derived from municipal solid waste. Waste Management, 29, 2289-2297.
Gehrmann Hans-Joachim, Seifert Helmut, Beckmann Michael, Glorius Thomas. (2012). Substitute fuels in power plant technology. Chemie Ingenieur Technik, 84, 1-15.
Giere´ Reto, Smith Katherine, Blackford Mark. (2006). Chemical composition of fuels and emissions from a coal + tire combustion experiment in a power station. Fuel, 85, 2278-2285.
Gisi Sabino De, Chiarelli Agnese, Tagliente Luca, Notarnicola Michele. (2018). Energy, environmental and operation aspects of a SRF-fired fluidized bed waste-to-energy plant. Waste Management, 73, 271-286.
Gungor Afsin. (2013). Simulation of co-firing coal and biomass in circulating fluidized beds. Energy Conversion and Management, 65, 574-579.
Hariana., Prabowo, Hilmawan Edi, Kuswa Fairuz Milky, Darmawan Arif, Aziz Muhammad. (2012). A comprehensive evaluation of cofiring biomass with coal and slagging-fouling tendency in pulverized coal-fired boilers.
Hernandez-Atonal Francisco D., Ryu Changkook, Sharifi Vida N., Swithenbank Jim. (2007). Combustion of refuse-derived fuel in a fluidised bed. Chemical Engineering Science, 62, 627-635.
Hilber Th., Thorwarth H., Stack-Lara V., Schneider M., Maier J., Scheffknecht G. (2007). Fate of mercury and chlorine during SRF co-combustion. Fuel, 86, 1935-1946.
Iacovidou Eleni, Hahladakis John, Deans Innes, Velis Costas, Purnell Phil. (2017). Technical properties of biomass and solid recovered fuel (SRF) co-fired with coal: Impact of on multi-dimensional resource recovery value. Waste Management, 73, 535-545.
Isaac Kerina, Bada Samson O. (2020). The co-combustion performance and reaction kinetics of refuse derived fuels with South African high ash coal. Heliyon, 6, e03309.
Khalf A., Trouve G., Delobel R., Delfosse L. (2000). Correlation of CO and PAH emissions during laboratory-scale incineration of wood waste furnitures. J. Anal. Appl. Pyrolysis, 56, 243-262.
Landsberger S., Chichester D.L. (1995). Characterization of household plastics for heavy metals using neutron activation analysis, Journal of radioanalytical and nuclear chemistry, 192(2), pp.289-297.
Leckner Bo, Lind Fredrik. (2020). Combustion of municipal solid waste in fluidized bed or on grate – A comparison. Waste Management, 109, 94-108.
Lee Jong-Min, Kim Down-Won, Kim Jae-Sung, Na Jeong-Geol, Lee See-Hoon. (2010). Co-combustion of refuse derived fuel with Korean anthracite in a commercial circulating fluidized bed boiler. Energy, 35, 2814-2818.
Lonardo Maria Chiara Di, Franzese Maurizio, Costa Giulia, Gavasci Renato, Lombardi Francesco. (2015). The application of SRF vs. RDF classification and specifications to the material flows of two mechanical-biological treatment plants of Rome: Comparison and implications.
Lu Liang, Ismail T.M., Jin Yuqi, El-Salam M., Kunio Yoshikawa. (2016). Numerical and experimental investigation on co-combustion characteristics of hydrothermally treated municipal solid waste with coal in a fluidized bed. Fuel Processing Technology, 154, 52-65.
Mahmoudi Shiva, Baeyens Jan, Seville Jonathan P.K. (2010). NOx formation and selective non-catalytic reduction (SNCR) in a fluidized bed combustor of biomass. biomass and bioenergy, 34, 1393-1409.
Maj Izabella, Kalisz Sylwester, Wejkowski Robert, Pronobis Marek, Gołombek Klaudiusz. (2022). High-temperature corrosion in a multifuel circulating fluidized bed (CFB) boiler co-firing refuse derived fuel (RDF) and hard coal. Fuel, 324, 124749.
Martignon Giovanna Pinuccia. (2020). Trends in the use of solid recovered fuels. IEA Bioenergy, 36, 2020-01.
Montané Daniel, Abelló Sònia, Farriol Xavier, Berrueco César. (2013). Volatilization characteristics of solid recovered fuels (SRFs). Fuel Processing Technology, 113, 90-96.
Mylläri Fanni, Karjalainen Panu, Taipale Raili, Aalto Pami, Häyrinen Anna, Rautiainen Jani, Pirjola Liisa, Hillamo Risto, Keskinen Jorma, Rönkkö Topi. (2017). Physical and chemical characteristics of flue-gas particles in a large pulverized fuel-fired power plant boiler during co-combustion of coal and wood pellets. Combustion and Flame, 176, 554-566.
Nasrullah Muhammad, Hurme Markku, Oinas Pekka, Hannula Janne, Vainikka Pasi. (2017). Influence of input waste feedstock on solid recovered fuel production in a mechanical treatment plant. Fuel Processing Technology, 163, 35-44.
Niu Yanqing, Du Wenzhi, Xu Weigang, Liu Yuanyi, Xiong Yingying, Hui Shien. (2014). Experimental study on the coexistent dual slagging in biomass-fired furnaces: Alkali- and silicate melt-induced slagging. Waste Managemen, 30, 1334-1340.
Niu Yanqing, Tan Hongzhang, Wang Xuebin, Liu Zhengning, Liu Haiyu, Liu Yang, Xu Tongmo. (2010). Study on fusion characteristics of biomass ash. Bioresource Technology, 101, 9373-9381.
Park Jae Hyeok, Lee Dong-Ho, Han Keun-Hee, Shin Jong-Seon, Bae Dal-Hee, Shim Tae-Earn, Lee Jeong Hwan, Shun Dowon. (2019). Effect of chemical additives on hard deposit formation and ash composition in a commercial circulating fluidized bed boiler firing Korean solid recycled fuel. Fuel, 236, 792-802.
Passamani Giorgia, Ragazzi Marco, Torretta Vincenzo. (2016). Potential SRF generation from a closed landfill in northern Italy. Waste Managemen, 47, 157-163.
Patel C., Lettieri P., Germanà A. (2012). Techno-economic performance analysis and environmental impact assessment of small to medium scale SRF combustion plants for energy production in the UK. Process Safety and Environmental Protection, 90, 255-262.
Peters Jens, May Jan, Ströhle Jochen, Epple Bernd. (2020). Flexibility of CFB Combustion: An Investigation of Co-Combustion with Biomass and RDF at Part Load in Pilot Scale. Energies, 13, 4665.
Priyanto Dedy Eka, Matsunaga Yasuo, Ueno Shunichiro, Kasai Hidekazu, Tanoue Tatsurou, Mae Kazuhiro, Fukushima Hitoshi. (2017). Co-firing high ratio of woody biomass with coal in a 150-MW class pulverized coal boiler: Properties of the initial deposits and their effect on tube corrosion. Fuel, 208, 714-721.

Pronobis Marek. (2005). Evaluation of the influence of biomass co-combustion on boiler furnace slagging by means of fusibility correlations. Biomass and Bioenergy, 28, 375-383.
Pronobis Marek. (2006). The influence of biomass co-combustion on boiler fouling and efficiency. Fuel, 85, 474-480.
Reinmöller Markus, Schreiner Marcus, Guhl Stefan, Neuroth Manuela, Meyer Bernd. (2019). Ash behavior of various fuels: The role of the intrinsic distribution of ash species. Fuel, 253, 930-940.
Ruth Lawrence A. (1998). Energy from municipal solid waste : A comparison with coal combustion technology. Energy Combust, 24, 545-564.
Sahu Pradeep, Prabu V. (2021). Techno-economic analysis of co-combustion of Indian coals with municipal solid waste in subcritical and supercritical based steam turbine power generating carbon-negative systems. Energy, 233, 121053.
Samolada M.C., Zabaniotou A.A. (2014). Energetic valorization of SRF in dedicated plants and cement kilns and guidelines for application in Greece and Cyprus. Resources. Conservation and Recycling, 83, 34-43.
Savolainen Kati. (2003). Co-firing of biomass in coal-fired utility boilers. Applied Energy, 74, 369-381.
Sever Akdag A., Atımtay A., Sanin F.D. (2016). Comparison of fuel value and combustion characteristics of two different RDF samples. Waste Managemen, 47, 217-224.
Stenberg Viktor, Ryd´en Magnus, Lind Fredrik. (2023). Evaluation of bed-to-tube heat transfer in a fluidized bed heat exchanger in a 75 MWth CFB boiler for municipal solid waste fuels. Fuel, 339, 127375.
Szydełko Arkadiusz, Ferens Wiesław, Rybak Wiesław. (2020). The effect of mineral additives on the process of chlorine bonding during combustion and co-combustion of Solid Recovered Fuels. Waste Management, 102, 624-634.
Tan Peng, Ma Lun, Xia Ji, Fang Qingyan, Zhang Cheng, Chen Gang. (2017). Co-firing sludge in a pulverized coal-fired utility boiler: Combustion characteristics and economic impacts. Energy, 119, 392-399.
Tchobanoglous, G., Thesen, H., Vigil, S.A., (1993). Integrated solid waste management, Mcgraw-Hill International Edition, pp. 749-750.
Teixeira Paula, Lopes Helena, Gulyurtlu Ibrahim, Lapa Nuno, Abelha Pedro. (2012). Evaluation of slagging and fouling tendency during biomass co-firing with coal in a fluidized bed. Biomass and Bioenergy, 39, 192-203.
Tillman D.A. (2000). Biomass coring: the technology, the experience, the combustion consequences. Biomass and Bioenergy, 19, 365-384.
Tyagi Vinay Kumar, Kapoor Aparna, Arora Pratham, Banu J. Rajesh, Das Sukanya, Pipesh Shubham, Kazmi A.A. (2021). Mechanical-biological treatment of municipal solid waste: Case study of 100 TPD Goa plant, India. Journal of Environmental Management, 292, 112741.
Vainio Emil, Yrjas Patrik, Zevenhoven Maria, Brink Anders, Laurén Tor, Hupa Mikko, Kajolinna Tuula, Vesala Hannu. (2013). The fate of chlorine, sulfur, and potassium during co-combustion of bark, sludge, and solid recovered fuel in an industrial scale BFB boiler. Fuel Processing Technology, 105, 59-68.
Velis C. A., Longhurst P. J., Drew G. H., Smith R., Pollard S. J. T. (2011). Production and Quality Assurance of Solid Recovered Fuels Using Mechanical—Biological Treatment (MBT) of Waste: A Comprehensive Assessment. Critical Reviews in Environmental Science and Technology, 40:12, 979-1105.
Velis Costas, Wagland Stuart, Longhurst Phil, Robson Bryce, Sinfield Keith, Wise Stephen., Pollard Simon. (2012). Solid Recovered Fuel: Influence of Waste Stream Composition and Processing on Chlorine Content and Fuel Quality. Environ. Sci. Technol, 46, 1923-1931.
Viczek S.A., Aldrian A., Pomberger R., Sarc R. (2020). Determination of the material-recyclable share of SRF during co-processing in the cement industry. Resources, Conservation & Recycling, 156, 104696.
Wagland S.T., Kilgallon P., Coveney R., Garg A., Smith R., Longhurst P.J., Pollard S.J.T., Simms N. (2011). Comparison of coal/solid recovered fuel (SRF) with coal/refuse derived fuel (RDF) in a fluidised bed reactor. Waste Management, 31, 1176-1183.
Wan Hou-Peng, Chang Ying-Hsi, Chien Wen-Cheng, Lee Hom-Ti, Huang C.C. (2008). Emissions during co-firing of RDF-5 with bituminous coal, paper sludge and waste tires in a commercial circulating fluidized bed co-generation boiler. Fuel, 87, 761-767.
Wikstrom E., Marklund S. (2001). The influence of level and chlorine source on the formation of mono- to octa-chlorinated dibenzo-p-dioxins, dibenzofurans and coplanar polychlorinated biphenyls during combustion of an artificial municipal waste. Chemosphere, 43, 227-234.
Wu Hao., Glarborg Peter., Frandsen Flemming Jappe., Johansen Kim Dam. (2013). Trace elements in co-combustion of solid recovered fuel and coal. Fuel Processing Technology, 105, 212-221.
Zevenhoven-Onderwater M., Blomquist J.-P., Skrifvars B.-J., Backman R., M Hupa M. (2000). The prediction of behaviour of ashes from five different solid fuels in fluidised bed combustion. Fuel, 79, 1353-1361.
Zuwala Jaroslaw, Sciazko Marek. (2010). Full-scale co-firing trial tests of sawdust and bio-waste in pulverized coal-fired 230 t/h steam boiler. biomass andbioenergy, 34, 1165-1174.
台灣電力公司綜合研究所「火力電廠SCR脫硝觸媒性能檢測與品質管理」,(2019)。
張慶源、李元陞、吳照雄、林法勤、謝哲隆、陳奕宏、張家驥「生質燃料應用評估與示範」,行政院環境保護署環境檢驗所,(2013)。
許宏銘「模擬都市固體廢棄物衍生燃料及燃煤共同燃燒之污染物排放特性研究」,逢甲大學碩士論文,(2004)。
郭麗雯「研習生質燃料發電技術」,台灣電力公司綜合研究所,(2015)。
陳盛健、高宏亮、余以雄、陳吉春「垃圾衍生性燃料(RDF)的製備及應用」,節能環保技術, pp. 27~29,(2004)。
黃聖賢「垃圾衍生燃料再利用方式探討」,中興工程 第96期,pp. 85~94,(2007)。
新竹縣政府環境保護局「新竹縣多元垃圾處理計畫可行性評估與先期規劃作業計畫」,(2019)。
經濟部「經濟部事業廢棄物再利用管理辦法」,(2024)
經濟部工業局「生質能暨環保產業推動計畫」,(2020)
經濟部工業局「臺灣生質能暨環保產業調查分析報告」,(2019)。
經濟部工業局「廢棄資源回收與處理設備技術手冊及案例彙編」,(2003)。
萬皓鵬,李宏台「廢棄物衍生燃料的使用」,工業技術研究院能源與環境研究所,科學發展450期 pp. 34~43,(2010)。
謝清泉「雲林縣設置機械生物處理系統(MBT)前置規畫計畫國參訪出國報告」,(2017)。
韓佳佑,陳治均「生質燃料與煤炭混燒對我國電力結構影響研究」,台灣能源期刊第六卷第二期 pp. 165~183,(2019)。
蘇黃清「紡織污泥處理回收再利用產業分析」,國立中央碩士論文,(2016)。
行政院環境保護署「111年事業廢棄物申報量統計報告」,(2024)。
行政院環境保護署「事業廢棄物清理計畫書審查作業參考指引」,(2024)。
指導教授 江康鈺 審核日期 2024-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明