博碩士論文 110323130 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:116 、訪客IP:18.217.122.254
姓名 陳澤儀(Tse-Yi Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 鎳鈦記憶合金電極應用於不鏽鋼彎管內表面電化學拋光之研究
(Research on the application of nickel-titanium memory alloy electrode in electrochemical polishing of the stainless steel elbows inner surface)
相關論文
★ 混氣放電線切割加工 N-Type 單晶碳化矽之研究★ 微細片狀電極結合超音波輔助電化學放電加工於石英玻璃加工微槽之研究
★ 磁場輔助電化學加工法於不銹鋼陣列微孔拋光之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-8-23以後開放)
摘要(中) 不鏽鋼彎管在許多產業扮演著至關重要的角色,許多產業需要不鏽鋼彎管道內部表面光滑,而管道內部表面光滑的優勢在於可以更加確保產品的品質、安全性、整潔性以及減少微生物附著的可能性,並可以延長不鏽鋼彎管使用壽命還可以減少維護成本。但是不鏽鋼內彎管的彎曲部分使得一般的抛光方法比較難以接觸到內表面的每個角落,尤其是在彎曲半徑較小的情況下,拋光難度顯著增加。為了解決不鏽鋼彎管拋光的問題本研究使用電化學拋光,並使用具有能夠任意塑形的鎳鈦形狀記憶合金作為電極。
鎳鈦形狀記憶合金具有形狀記憶特性,本研究使用了鎳鈦形狀記憶合金的形狀記憶能力,藉由本研究其能夠記憶成不鏽鋼彎管的形狀。因此將鎳鈦形狀記憶合金應用於電極的角色,進行不鏽鋼彎管內壁的電化學拋光。
由實驗結果顯示,鎳鈦形狀記憶合金當作電極會無法重複使用,電場會直接影響此材料的記憶特性,而導致表面粗糙度不均勻,根據實驗進行調整合適的加工電壓、脈衝時間比、加工時間、電解液溫度,減少對鎳鈦形狀記憶合金電極的損害,並達到拋光效果,並將表面粗糙度變得更加均勻。初始不鏽鋼彎管內壁平均粗糙度為Ra 1.207 µm,經過脈衝電化學拋光後有效將粗糙度降至Ra 0.043 µm。
摘要(英) Stainless steel bent pipes play a crucial role in various industries where a smooth inner surface is essential. The benefits of a smooth inner surface include enhanced product quality, safety, cleanliness, reduced potential for microbial adhesion, extended pipe lifespan, and reduced maintenance costs. However, the curved sections of stainless steel bent pipes make it difficult for conventional polishing methods to reach all areas of the inner surface, especially when the bending radius is small, significantly increasing the polishing difficulty.
To address the polishing challenges of stainless steel bent pipes, this study utilizes electrochemical polishing and employs nickel-titanium shape memory alloy (NiTi SMA) as the electrode. NiTi SMA has shape memory properties, allowing it to remember and conform to the shape of the stainless steel bent pipe. Thus, NiTi SMA is used as the electrode to perform electrochemical polishing on the inner walls of the stainless steel bent pipes.
Experimental results indicate that NiTi SMA electrodes cannot be reused due to the direct impact of the electric field on the material′s memory properties, leading to uneven surface roughness. By adjusting the processing voltage, duty cycle, processing time, and electrolyte temperature based on experimental findings, damage to the NiTi SMA electrodes can be minimized, achieving a polishing effect and making the surface roughness more uniform. Initially, the average inner surface roughness (Ra) of the stainless steel bent pipe was Ra 1.207 µm. After pulse electrochemical polishing, the roughness was effectively reduced to Ra 0.043 µm.
關鍵字(中) ★ 電化學拋光
★ 鎳鈦形狀記憶合金電極
★ 熱處理
★ 不鏽鋼彎管內壁
★ 表面粗糙度
關鍵字(英) ★ Electrochemical Polishing
★ Nickel-Titanium Shape Memory Alloy Electrode
★ Heat Treatment
★ Inner Wall of Stainless Steel Bent Tube
★ Surface Roughness
論文目次 目錄
摘 要 i
ABSTRACT ii
誌 謝 iv
圖目錄 vii
表目錄 xi
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機及目的 3
1-3 文獻回顧 4
1-3-1 電化學拋光文獻回顧 4
1-3-2 鎳鈦記憶合金文獻回顧 11
1-4 論文架構 13
第二章 實驗基礎理論 14
2-1 電化學加工的基礎理論 14
2-1-1 法拉第定律 15
2-1-2 歐姆定律 15
2-2 電化學拋光的基礎理論 16
2-2-1 電解拋光原理 17
2-2-2 金屬鈍化 19
2-2-3 基礎參數 21
2-3 鎳鈦形狀記憶合金的基礎理論 23
2-3-1 形狀記憶合金的記憶效應 25
第三章 實驗設備與材料 27
3-1 實驗方法 27
3-2 基礎實驗相關設備 28
3-3 實驗材料 35
3-4 電解液 37
3-5 鎳鈦形狀記憶合金熱處理方法 38
3-6 實驗流程與方法 39
第四章 加工模擬 42
4-1 模型描述 42
4-2 電場 43
4-3 流場 45
4-4 變形幾何 47
第五章 結果與討論 48
5-1 鎳鈦形狀記憶合金記憶參數分析 48
5-2 電解液對鎳鈦形狀記憶合金電極的影響 54
5-3 脈衝電壓對鎳鈦形狀記憶合金的影響 56
5-4 鎳鈦形狀記憶合金的鈍化與阻抗 59
5-5 不同電化學拋光參數對表面粗糙度之分析 60
5-5-1 加工電壓 60
5-5-2 加工脈衝時間比 68
5-5-3 加工時間 79
5-5-4 加工溫度 89
5-6 不鏽鋼彎管側壁R角粗糙度 98
5-7 模擬結果 100
第六章 結論 103
未來展望 105
參考文獻 106
參考文獻 19參考文獻
[1] D. Landolt, “Fundamental aspects of electropolishing”, Electrochimica Acta, Vol.32, pp. 1-11, 1987.
[2] D. Wallinder, J. Pan, C. Leygraf, A. Delblanc-Bauer, “Electrochemical investigation of pickled and polished 304L stainless steel tubes”. Corrosion Science, Vol.42, pp. 1457-1469, 2000.
[3] S. Mohan, D. Kanagaraj, R. Sindhuja, S. Vijayalakshmi, N. Renganathan, “Electropolishing of stainless steel—a review”, Transactions of the IMF, Vol.79, pp. 140-142, 2001.
[4] P. S. Kao, H. Hocheng, “Optimization of electrochemical polishing of stainless steel by grey relational analysis”, Journal of Materials Processing Technology, Vol.140, pp. 255-259, 2003.
[5] S.-J. Lee, J.-J. Lai, “The effects of electropolishing (EP) process parameters on corrosion resistance of 316L stainless steel”, Journal of Materials Processing Technology, Vol.140, pp. 206-210, 2003.
[6] S.-J. Lee, J.-J. Lai, Y.-T. Lin, “Simulation of the formation mechanism of a viscous layer for the electropolishing process”, WIT Transactions on Engineering Sciences, Vol.48, pp. 203-213, 2005.
[7] C.-C. Lin, C.-C. Hu, T.-C. Lee, “Electropolishing of 304 stainless steel: Interactive effects of glycerol content, bath temperature, and current density on surface roughness and morphology”, Surface and Coatings Technology, Vol.204, pp. 448-454, 2009.
[8] J. J. Yi, C. M. Chen, X. Q. Tian, B. Y. Ji, “Basic experimental investigation of pulsed electrochemical mechanical polishing process”, Surface Engineering, Vol.25, pp. 535-540, 2009.
[9] C.-l. Men, H. Q. Li, H. Zhang, “Pulse Electrochemical Polishing of 304 Stainless Steel: Interactive Effects of Bath Temperature, Pulse Duty Ratio, Polishing Time, and Current Density on Surface Reflectivity and Morphology”, Advanced Materials Research, Vol.233-235, pp. 985 – 989, 2011.
[10] C. L. Men, W. Wang, B. Yang, Q. Wang, H. Zhang, “Environmental-friendly electropolishing of 304 stainless steel surface”, Advanced Materials Research, Vol.490, pp. 3187-3191, 2012.
[11] M. Momeni, M. Esfandiari, M.H. Moayed, “Improving pitting corrosion of 304 stainless steel by electropolishing technique”, Iranian Journal of Materials Science and Engineering, Vol.9, pp. 34-42, 2012.
[12] J. Richard, “Corrosion Studies on Electro Polished Stainless Steels for the Use as Metallic Bipolar Plates in PEMFC Applications” Energy Procedia, Vol.20, pp. 324-333, 2012.
[13] A. A. Gomez-Gallegos, F. Mill, A. R. Mount, “Surface finish control by electrochemical polishing in stainless steel 316 pipes” Journal of Manufacturing Processes, Vol.23, p. 83-89, 2016.
[14] S.-H. Kim, S.-G. Choi, W.-K. Choi, E.-S. Lee, “A study of the improvement surface roughness and optimum machining characteristic of L-shaped tube STS 316L by electropolishing” The International Journal of Advanced Manufacturing Technology, Vol.85, pp. 2313-2324, 2016.
[15] E. M. Beamud, P. J. Núñez, E. García-Plaza, D. Rodríguez, “ Impact of electrolyte concentration on surface gloss in electropolished stainless steel”, Procedia Manufacturing, Vol.13, pp. 663-670, 2017.
[16] G. Yang, B. Wang, K. Tawfiq, H. Wei, S. Zhou, “Electropolishing of surfaces: theory and applications”, Surface Engineering, Vol.33, pp. 149-166, 2017.
[17] D. Nakar, D. Harel, “Electropolishing effect on roughness metrics of ground stainless steel: a length scale study”, Surface Topography: Metrology and Properties, Vol.6, pp.503, 2018.
[18] Y. G. Aliakseyeu, A. Y. Korolyov, V. Niss, A. Parshuto, “The Use of Pulsed Modes in the Electrochemical Polishing of Corrosion-Resistant Steels”, Science & Technique, Vol.18, pp. 200-208, 2019.
[19] W. Han, F. Fang, “Fundamental aspects and recent developments in electropolishing”, International Journal of Machine Tools and Manufacture, Vol.139 pp. 1-23, 2019.
[20] W. Liu, S. Ao, Z. Luo, “Multi-physics Simulation of the Surface Polishing Effect During Electrochemical Machining”, International Journal of Electrochemical Science, Vol.14 pp. 7773-7789, 2019.
[21] Z. Chaghazardi, L. Hof and R. Wuthrich, “Electropolishing of inside surfaces of stainless steel tubing”, ECS Transactions, Vol.97, pp. 523, 2020.
[22] W. Han, F. Fang, “Two-step electropolishing of 316L stainless steel in a sulfuric acid-free electrolyte”, Journal of Materials Processing Technology, Vol.279, pp. 116558, 2020.
[23] W. Han, F. Fang, “Eco-friendly NaCl-based electrolyte for electropolishing 316L stainless steel”, Journal of Manufacturing Processes, Vol.58, pp. 1257-1269, 2020.
[24] E. Łyczkowska-Widłak, P. Lochyński, G. Nawrat, “Electrochemical Polishing of Austenitic Stainless Steels”, Materials, Vol.13, pp. 2557,2022.
[25] 李延梁,曾永彬, 楊濤, “金屬彎管內表面電解機械複合拋光用電極及裝置與方法”, 中華人民共和國專利, 2021.
[26] L. An, D. Wang and D. Zhu, “Combined electrochemical and mechanical polishing of interior channels in parts made by additive manufacturing”, Additive Manufacturing, Vol.51, pp. 102638, 2022.
[27] H.-K. Hwang and S.-J. Kim, “Investigation on the effective factor calculation of electropolishing using full factorial design and mechanism model by microscopic analysis for super austenitic stainless steel”, Surfaces and Interfaces, Vol.37, pp. 102730, 2023.
[28] A. R. Safaruddin, U. A. Salim, S. Suyitno, M. Mahardika, B. Arifvianto “Electropolishing with Circulated Electrolyte for Improving Surface Finish of Brass”, Solid State Phenomena, Vol.354, pp. 41-48, 2023. [29] S. Miyazaki, K. Otsuka, Y. Suzuki, “Transformation pseudoelasticity and deformation behavior in a Ti-50.6at%Ni alloy”, Scripta Metallurgica, Vol.15, pp. 287-292, 1981.
[30] M. Carl, B. Zhang, M. L. Young, “Texture and strain measurements from bending of NiTi shape memory alloy wires”, Shape Memory and Superelasticity, Vol2, pp. 254-263, 2016.
[31] V. Stolyarov, “Features of Electroplastic Effect in Alloys with Martensite Transformation”, Acta Metallurgica Sinica (English Letters), Vol.31, pp. 1305-1310, 2018.
[32] Z. Kazei, V. Snegirev, “Elastic Properties of TiNi Shape Memory Alloys Subjected to Various Heat Treatments”, Physics of the Solid State, Vol.61, pp. 1163-1168, 2019.
[33] S. Dahake, N. Awate, R. Shelke and A. Khalatkar, “Shape Memory Alloy as a Smart Material: A Review”, in International Conference on Smart Technologies for Energy, Environment and Sustainable Development, pp. 395-401, 2020.
[34] I. Y. Paez-Pidiache, N. B. Lozada-Castillo, A. Luviano-Juárez, “Caracterización de las SMAs y sus aplicaciones: Una revisión”, Pädi Boletín Científico de Ciencias Básicas e Ingenierías del ICBI, Vol.8, pp. 1-10, 2021.
[35] P. K. Jain, N. Sharma, R. Vyas and S. Jain, “Characterization Techniques for Shape-Memory Alloys”, In Shape Memory Composites Based on Polymers and Metals for 4D Printing: Processes Applications and Challenges , 2022.
[36] S. Magaino, M. Matlosz and D. Landolt, “An Impedance Study of Stainless Steel Electropolishing ”, J Electrochem. Soc. Vol.140, No.5, pp.1365- 1372, 1993.
[37] 偕義弘著,“電解與磁力研磨之複合加工應用於內壁表面改善之研究”, 國立中央大學論文, 2003.
指導教授 洪榮洲(Jung-Chou Hong) 審核日期 2024-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明