博碩士論文 110323033 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:96 、訪客IP:3.145.78.203
姓名 陳俊樺(Jun-Hua Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 微細片狀電極結合超音波輔助電化學放電加工於石英玻璃加工微槽之研究
(Investigation of Ultrasonic-Assisted Electrochemical Discharge Machining for Quartz Micro-slot by Using Micro-sheet Electrode)
相關論文
★ 混氣放電線切割加工 N-Type 單晶碳化矽之研究★ 鎳鈦記憶合金電極應用於不鏽鋼彎管內表面電化學拋光之研究
★ 磁場輔助電化學加工法於不銹鋼陣列微孔拋光之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-8-23以後開放)
摘要(中) 本研究利用電化學放電加工 (Electrochemical Discharge Machining,
ECDM)結合超音波振動輔助,於石英玻璃進行通槽加工,使用階段式片狀
碳化鎢工具電極,工件為厚度 0.3 mm 之石英玻璃,進行加工特性之研究,
探討參數包含工作電壓、界面活性劑濃度變化、超音波輸出功率、進給速度
等加工參數對加工品質之影響,第一階段加工 UA-ECDM 搭配自製之荷重
元感知回饋控制系統,於加工時自動調整進給速度,防止工件之材料移除速
度較工具電極進給速度緩慢而導致破裂之現象,UA-ECDM 加工通槽後,維
持相同的加工配置下,直接進行第二階段 UVAG 加工,免除更換刀具與避
免定位精度破壞之問題,持續進給精密移動平台,加入鑽石研磨液,並藉由
超音波之高頻振動,使磨料持續對工件進行研磨,透過超音波研磨針對第一
階段電化學放電後之通槽進行破邊修整,完成第二階段加工,最後觀察入、
出口尺寸、出口破邊量之情形及加工後之電極消耗。
採用超音波振動輔助進行微槽加工,藉由超音波高頻振動使電解液產
生壓力產生變化,此壓力變化會形成泵吸作用,並對電解液產生擾動之效
果,加速排除加工區之反應熱及各種加工產物,藉此改善電解液隨加工深度
變深而循環效率降低之現象;另外,加入界面活性劑可提升工具電極表面潤
濕性,有助於改善加工效率,由實驗結果得知,界面活性劑有助於提升加工
深度,超音波振動輔助能夠減少蝕刻影響區,結合兩者輔助媒介之優勢進行
通槽,並藉由進給速度的調變改善通槽出口處破片之情形,最後進行超音波
研磨實現入口長寬分別為 0.459 mm、3.063 mm,出口長寬分別為 0.446 mm、
3.064 mm 之微槽尺寸,電極消耗率為 0.776 %。
摘要(英) This study employs Electrochemical Discharge Machining (ECDM) combined
with ultrasonic vibration assistance, using a stepped, flat tungsten carbide tool
electrode to machine through-slots in 0.3 mm thick quartz glass. The research
investigates the effects of various machining parameters on machining quality,
including working voltage, concentration of surfactant, ultrasonic output power
level, and feed rate.
In the first stage, the UA-ECDM, equipped with a self-made load cell feedback
control system, automatically adjusts the feed rate during machining to prevent
cracks caused by the material removal rate of the workpiece being slower than the
feed rate of the tool electrode. After machining the through-slot with UA-ECDM,
the second stage involves UVAG machining using the same setup to avoid tool
change and maintain positioning accuracy. This stage continues the feed on a
precision moving platform, introducing diamond abrasive slurry, and employs
high-frequency ultrasonic vibration to continuously grind the workpiece.
Ultrasonic grinding is used to deburr the through-slot edges formed in the first
stage of electrochemical discharge, completing the second stage of machining.
Finally, the study observes the inlet and outlet dimensions, the amount of outlet
burrs, and the electrical discharge consumption after machining.
The use of ultrasonic vibration-assisted micro-groove machining utilizes highfrequency ultrasonic vibrations to cause pressure changes in the electrolyte, which
creates a pumping effect and disturbs the electrolyte. This disturbance accelerates
the removal of reaction heat and various machining by-products from the
machining area, thereby improving the efficiency of electrolyte circulation as the
IV
machining depth increases. Additionally, adding surfactants enhances the
wettability of the tool electrode surface, contributing to improved machining
efficiency. Experimental results show that surfactants help increase machining
depth, and ultrasonic vibration assistance can reduce the affected area of etching.
By combining the advantages of both auxiliary media, it is possible to machine
through-grooves and improve the fragmentation at the groove exit by adjusting
the feed rate. Finally, ultrasonic grinding achieved micro-groove dimensions of
0.459mm * 3.063mm at the inlet and 0.446mm * 3.064mm at the outlet, with an
electrode wear rate of 0.776%.
關鍵字(中) ★ 精密電化學放電加工
★ 石英
★ 微槽加工
★ 界面活性劑
★ 超音波研 磨
★ 荷重元回饋
★ 有限元素分析
關鍵字(英)
論文目次 目 錄
摘 要................................................................................................................I
ABSTRACT...................................................................................................III
目 錄.............................................................................................................VI
圖目錄.............................................................................................................IX
表目錄.......................................................................................................... XIII
第一章 緒論..................................................................................................... 1
1-1 研究背景................................................................................................ 1
1-2 研究動機及目的 ................................................................................... 2
1-3 文獻回顧................................................................................................ 3
1-4 論文架構.............................................................................................. 12
第二章 實驗基礎理論................................................................................... 13
2-1 界面活性劑.......................................................................................... 13
2-2 臨界微胞濃度 ..................................................................................... 15
2-3 表面張力原理 ..................................................................................... 16
2-4 潤濕作用.............................................................................................. 18
2-5 極化...................................................................................................... 20
2-6 超音波振動輔助加工原理 ................................................................. 22
2-7 化學蝕刻原理 ..................................................................................... 24
2-8 放電加工原理 ..................................................................................... 27
2-8-1 放電加工材料移除機制.................................................................. 27
2-9 電化學放電加工基本配置 ................................................................. 30
2-9-1 電化學放電加工之放電火花形成機制.......................................... 31
2-9-2 電化學放電加工之材料移除機制.................................................. 34
第三章 實驗設備與方法............................................................................... 35
VII
3-1 實驗設備.............................................................................................. 35
3-2 實驗材料............................................................................................... 45
3-3 線切割修整工具電極 ......................................................................... 51
3-4 試片製作............................................................................................... 51
3-5 電解液配製........................................................................................... 52
3-6 研磨液配製........................................................................................... 52
3-7 實驗流程與方法 ................................................................................. 53
3-7-1 實驗參數設定................................................................................... 54
3-7-2 量測方法........................................................................................... 56
第四章 多重物理耦合模擬........................................................................... 57
4-1 片狀電極熱伸長之分析 ..................................................................... 57
4-1-1 工具電極之熱膨脹........................................................................... 59
4-1-2 工具電極之溫度分布....................................................................... 60
第五章 結果與討論....................................................................................... 61
5-1 不同加工參數對電化學放電於石英玻璃加工微槽之影響............. 61
5-2 工具電極氣膜之觀察 ......................................................................... 63
5-3 片狀工具電極 ECDM 之材料移除機制........................................... 67
5-4 荷重隨電源開啟時間之變化 ............................................................. 68
5-5 不同初始加工間隙工件表面之加工情形 ......................................... 69
5-6 工作電壓.............................................................................................. 70
5-7 界面活性劑濃度 ................................................................................. 74
5-8 超音波輸出功率 ................................................................................. 84
5-9 進給速度.............................................................................................. 92
5-9-1 等速進給.......................................................................................... 92
5-9-2 調速進給.......................................................................................... 97
VIII
5-10 超音波研磨...................................................................................... 100
5-11 電極消耗........................................................................................... 101
第六章 結論................................................................................................. 103
未來展望....................................................................................................... 105
參考文獻....................................................................................................... 106
參考文獻 參考文獻
[1] H. H. Kellog, “The interface observation of poles in water electrolytes”, Journal
of Electrochemical Society, Vol. 97, pp. 133-137, 1950.
[2] H. Kurafuji and K. Suda, “Electrical discharge drilling of glass”, Ann. Of the
CIRP, Vol. 16, pp. 415-419, 1968.
[3] N. H. Cook, G. B. Foote, P. Jordan, and B. N. Kalyani, “Experimental studies in
electro-machining”, Transactions of ASME Journal of Engineering for
Industry, Vol. 95, pp. 945-950, 1973.
[4] M. Kubota, “Drilling of steel by using electrochemical discharge
machining”, Proceedings of the International Conference on Production
Engineering, Tokyo, pp. 51-55, 1974.
[5] S. Tandon, V. K. Jain, P. Kumar, and K. P. Rajurkar, “Investigations into
machining of composites”, Precision Engineering, Vol. 12, pp. 227-238, 1990.
[6] K. Allesu, A. Ghosh, and M. K. Muju, “Preliminary qualitative approach of a
proposed mechanism of material removal in electrical machining of glass”,
European Journal of Mechanical Engineers, Vol. 366, pp. 202-207, 1992.
[7] H. Langen, V. Fascio, R. Wüthrich, and D. Viquerat, “Three-dimensional
structuring of borosilicate glass devices trajectory control”, International
Conference of the European Society for Precision Engineering and
Nanotechnology (EUSPEN) 2 (Eindhoven), pp. 435-438, 2002.
[8] V. Raghuram, “Experimental observations of the ECD phenomena”, Dissertation
Thesis, Indian Institute of Technology, Kanpur, India, 1994.
[9] V. Raghuarm, T. Pramila, Y. G. Srinivasa, and K. Narayanasamy, “Effect of the
circuit paramaters on the electrolytes in the electrochemical discharge
phenomenon”, Journal of Materials Processing Technology, Vol. 52, pp. 301-318,
1995.
107
[10]I. Basak, and A. Ghosh, “Mechanism of spark generation during electrochemical
discharge machining: a theoretical and experimental verification”, Journal of
Materials Processing Technology, Vol. 62, pp. 46-53, 1996.
[11]I. Basak, and A. Ghosh, “Mechanism of material removal in electrochemical
discharge machining: a theoretical model and experimental verification”, Journal
of Materials Processing Technology, Vol. 71, pp. 350-359, 1997.
[12]B. Bhattacharyya, B. N. Doloi, and S. K. Sorkhel, “Experimental investigations
into electrochemical discharge machining (ECDM) of non-conductive ceramic
materials”, Journal of Materials Processing Technology, Vol. 95, pp. 145-154,
1999.
[13]V. K. Jain, P. M. Dixit, and P. M. Pandey, “On the analysis of the electro-chemical
spark machining process-test of machining on composite materials”, International
Journal of Machine Tools, Vol. 39, pp. 165-186, 1999.
[14]何世賢,玻璃材料之電化學放電加工特性研究,碩士論文,國立中央大學機
械工程研究所,民國八十八年六月。
[15]C. T. Yang, S. S. Ho, and B. H. Yan, “Micro hole machining of borosilicate glass
trough electrochemical discharge machining (ECDM)”, Key Engineering
Materials, Vol. 196, pp. 149-166, 2001.
[16]R. Kulkarni, and G. K. Sharan, “An experimental study of discharge mechanism
in electrochemical discharge machining”, International Journal of Machine Tools
& Manufacture, Vol. 42, pp. 1121-1127, 2002.
[17]V. K. Jain, S. K. Choudhury, and K. M. Ramesh, “On the machining of alumina
and glass”, International Journal of Machine Tools and Manufacture, Vol. 42,
pp1269-1276, 2002.
[18]V. Fascio, H. H. Langen, H. Bieuler, and Ch. Comninellis, “Investigations of the
spark assisted chemical engraving”, Electrochemistry Communications, Vol. 5,
pp. 203-207, 2003.
[19]R. Wuthrich, V. Fascio, and H. Bleuler, “A stochastic model for electrode effects”,
Electrochimica Acta , Vol. 49, pp. 4005-4010, 2004.
108
[20]V. Fascio, R. Wüthrich, and H. Bleuler, “Spark assisted chemical engraving in the
light of electrochemistry”, Electrochimica Acta, vol. 49, pp. 3997-4003, 2004.
[21]R. Wuthrich, L. A. Hof, A. Lal1, K. Fujisaki, and H. Bleuler, “Physical principles
and miniaturization of spark assisted chemical engraving (SACE),” Journal of
Micromechanics and Microengineering, Vol. 15, pp. 268-275, 2005.
[22]彭文陽,電化學放電現象與製程應用之研究,博士論文,國立台灣大學機械
工程研究所,民國九十四年九月
[23]R. Wüthrich, C. Comninellis, and H. Bleuler, “Bubble evolution on vertical
electrodes under extreme current densities”, Electrochemical Acta, Vol. 50, pp.
5242-5246, 2005
[24]R. Wüthrich, and L. A. Hof, “The gas film in spark assisted chemical
engraving(SCAE) – A key element for micro-machining applications”,
International Journal of Machine Tools & Manufacture, Vol. 46, pp. 828-835,
2006
[25]R. Wüthrich, U. Spaelter, and H. Bleuler, “The current signal in spark-assisted
chemical engraving(SCAE): what does it tell us”, Journal of Micromechincs and
Microengineering, Vol. 16, pp. 779-785, 2006
[26]R. Wüthrich, U. Spaelter, Y. Wu, and H. Bleuler, “A systematic characterization
method for gravity-feed micro-hole drilling in glass with spark assisted chemical
engraving (SACE)”, Journal of Micromechanics and Microengineering, Vol. 16,
pp. 1891-1896, 2006.
[27]R. Wüthrich, B. Despont, P. Maillard, and H. Bleuler, “Improving the material
removal rate in spark-assisted chemical engraving (SACE) gravity-feed microhole drilling by tool vibration,” Journal of Micromechanics and Microengineering,
vol. 16, N28-N31, 2006.
[28]P. Maillard, B. Despont, H. Bleuler, and R. Wüthrich, “Geometrical
characterization of micro-holes drilled in glass by gravity-feed with spark assisted
chemical engraving (SACE),” Journal of Micromechanics and Microengineering,
vol. 17, pp. 1343-1349, 2007.
109
[29]S. K. Chak, and P. V. Rao, “Trepanning of Al2O3 by electro-chemical discharge
machining (ECDM) process using abrasive electrode with pulsed DC supply”,
International Journal of Machine Tools & Manufacture, Vol. 47 pp. 2061–2070,
2007.
[30]M. S. Han, B. K. Min, and S. J. Lee, “Improvement of surface integrity of electrochemical discharge machining process using powder-mixed electrolyte”, Journal
of Materials Processing Technology, Vol. 191, pp. 224–227, 2007.
[31]M. Jalali, P. Maillard, and R. Wüthrich, “Toward a better understanding of glass
gravity-feed micro-hole drilling with electrochemical discharges”, Journal of
Micromechanics and Microengineering, Vol. 19, 045001, 2008.
[32]M. S. Han, B. K. Min and S. J. Lee, “Geometric improvement of electrochemical
discharge micro-drilling using an ultrasonic-vibrated electrolyte”, Journal of
Micromechanics and Microengineering, Vol. 19, 065004, 2009.
[33]C. P. Cheng, K. L. Wu, C. C. Mai, Y. S. Hsu, and B. H. Yan, “Magnetic fieldassisted electrochemical discharge machining”, Journal of Micromechanics and
Microengineering, Vol.20, 075019 (7pp), 2010.
[34]C. P. Cheng, K. L. Wu, C. C. Mai, and C. K. Yang, ‘‘Study of gas film quality in
electrochemical discharge machining’’, International Journal of Machine Tools &
Manufacture, Vol. 50, pp. 689-697. 2010.
[35]C. K. Yang, C. P. Cheng, C. C. Mai, A. C. Wang, J. C. Hung and B. H. Yan, “Effect
of surface roughness of electrode materials in ECDM performance”, International
Journal of Machine Tools & Manufacture, Vol. 50, pp. 1088-1096, 2010.
[36]M. R. Razfar, A. Behroozfar, and J. Ni, ‘‘Study of the effects of tool longitudinal
oscillation on the machining speed of electrochemical discharge drilling of glass’’,
Precision Engineering, Vol. 38, pp. 885-89. 2014.
[37]K. H. Nguyen, P. A. Lee, and B. H. Kim, “Experimental investigation of ECDM
for fabricating micro structures of quartz”, International Journal of Precision
Engineering and Manufacturing, Vol. 16, no. 1, pp. 5-12, 2015.
110
[38]S. Elhami, and M. R. Razfar, ‘‘Analytical and experimental study on the
integration of ultrasonically vibrated tool into the micro electro-chemical
discharge drilling’’ Precision Engineering, Vol. 47, pp. 424-433. 2017.
[39]N. Sabahi, M. R. Razfar, and M. Hajian, “Experimental investigation of
surfactant-mixed electrolyte into electrochemical discharge machining (ECDM)
process”, Journal of Materials Processing Technology, Vol. 250, pp. 190-202,
2017.
[40]K. R. Kolhekar, and M. Sundaram ‘‘Study of gas film characterization and its
effect in electrochemical discharge machining’’, Precision Engineering, Vol. 53,
pp. 203-211, 2018.
[41]H. Chen, and Y. Liu, Z. Wei, ‘‘Ultrasonic Vibration Assisted Micro
Electrochemical Discharge Drilling Technology’’, IEEE International Conference
on Robotics and Biomimetics, pp. 2839-2843, 2019.
[42]R. S. Rathore, and A. Dvivedi, “Sonication of tool electrode for utilizing high
discharge energy during ECDM”, Materials and Manufacturing Processes, Vol.
35, no. 4, pp. 415-429, 2020.
[43]T. Singh, J. Arab, and P. Dixit, “A review on microholes formation in glass-based
substrates by electrochemical discharge drilling for MEMS applications”,
Machining Science and Technology, Vol. 26, no. 2, pp. 276-337, 2022.
[44]R. K. Arya, and A. Dvivedi, ‘‘Improving the electrochemical discharge machining
(ECDM) process for deep-micro-hole drilling on glass by application of the
electrolyte-air injection’’, Precision Engineering, Vol. 49, pp. 8916-8935, 2023.
[45]H. Tsuchiya, T. Inoue, and M. Miyazaiki, “Wire electro-chemical discharge
machining of glasses and ceramics”, Bulletin Japanese Society of Precision
Engineering, Vol. 19, pp. 73-74, 1985.
[46]V. K. Jain, P. S. Rao, S. K. Choudhury, and K. P. Rajurkar, “Experimental
investigations into traveling wire electrochemical spark machining (TW-ECSM)
of composites”, Transactions of ASME, Journal of Engineering for Industry, Vol.
113, pp. 75-84, 1991.
111
[47]V. Fascio, R. Wüthrich, D. Viquerat, and H. Lengen, “3D microstructuring of glass
using electrochemical discharge machining (ECDM)”, International Symposium
on Micromechatronics and Human Science, pp. 179-183, 1999.
[48]C. T. Yang, S. L. Song, B. H. Yan, and F. Y. Huang, “Improving machining
performance of wire electrochemical discharge machining by adding SiC abrasive
to electrolyte”, International Journal of Machine Tools & Manufacture, Vol. 46,
pp. 2044-2050, 2006.
[49]J. D. Ziki, T. F. Didar, and R. Wüthrich, “Micro-texturing channel surfaces on
glass with spark assisted chemical engraving”, International Journal of Machine
Tools and Manufacture, Vol. 57, pp 66-72, 2012.
[50]Y. Chen, X. Feng, and G. Xin, “Experimental Study on Ultrasonic VibrationAssisted WECDM of Glass Microstructures with a High Aspect Ratio”,
Micromachines (Basel), Vol. 12, no. 2, 2021.
[51]Z. Chen, Y. Liu, T. Wang, and K. Wang, “Ultrasonic assisted electrochemical
discharge milling of complex glass microstructure with high-quality”, Journal of
Manufacturing Processes, Vol. 94, pp 94-106, 2023.
[52]J. C. Hung, and T. K. Su, “Machining characteristic of diamond grit-coated tools
in grinding-aided ECDM”, Materials and Manufacturing Processes, Vol. 38, pp
1851-1599, 2023.
[53]蘇裕昌,界面活性劑的基礎及應用,漿紙技術,2015.
[54]高橋越民、難波義郎、小池基生、小林正雄,界面活性剤ハンドブック,工
学図書,1968.
[55]鄭志平,微電化學放電加工法應用於硼矽玻璃的精微加工技術之研究,博士
論文,2008。
[56]楊程光,電化學放電加工法應用於石英的精微加工研究,博士論文,2011。
指導教授 洪榮洲 審核日期 2024-8-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明