博碩士論文 110326604 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:45 、訪客IP:18.219.242.213
姓名 常明文(Truong Minh Man)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 應用PVA/PG/SBA-15混合基質薄膜提升二氧化碳分離性能之評估研究
(Enhanced CO2 separation performance by PVA/PG/SBA-15 mixed matrix membranes)
相關論文
★ 大學生對綠建材認知與態度之研究★ 塑膠廢棄物催化裂解產能效率與裂解油物種特性變化之評估研究
★ 應用高壓蒸氣技術製備抗菌輕質材料及其 特性評估研究★ 加速碳酸鹽反應對都市垃圾焚化灰渣捕捉二氧化碳之可行性評估研究
★ 應用無機聚合物技術探討都市垃圾焚化飛灰 無害化之可行性研究★ 動畫與教學介入對桃園市某國小六年級學童環境行動影響之研究
★ 下水污泥與工業區廢水污泥共同蒸氣氣化產能效率與重金屬分佈特性之研究★ 應用自製催化劑評估廢車破碎殘餘物氣化產能效率及污染物排放特性
★ 應用熱裂解技術評估廢車破碎殘餘物轉換能源效率及重金屬排放特性★ 應用揮發性有機物自動採樣技術評估工業區異味污染物來源及指紋之可行性研究
★ 評估傳統濕式洗滌塔對印刷電路板防焊製程之揮發性有機氣體去除效率之研究★ 污水處理廠逸散微粒之物理、化學及生物特性分析
★ 應用熱氣清淨系統提升稻稈氣化過程合成氣品質及污染物去除之可行性研究★ 台北都會區PM1.0微粒物理特徵描述與含碳氣膠來源分析
★ 以無人飛行載具(UAV)平台探討空氣污染物之垂直分佈特徵及搭載之氣膠儀器性能評估★ 應用高溫淨化技術提昇廢水污泥與沼渣共氣化產能效率及 重金屬去除之評估研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-8-19以後開放)
摘要(中) 本研究使用中孔SiO2製備平均孔徑為3.13 nm的球形分子篩 (Santa Barbara Amorphous-15, SBA-15) 做為薄膜之基質,並添加含有聚乙烯醇 (polyvinyl alcohol, PVA) 及甘胺酸哌? (piperazine glycinate, PG) 的溶液,以製備混合基質薄膜 (mixed matrix membranes, MMMs) ,並針對製備之薄膜進行材料特性及氣體分離試驗分析。透過FT-IR 光譜測試,在波數為 1,144 cm-1 時,發現縮醛形成的交聯結構;以及在波數為 1,060 cm-1 時,觀察到Si-O-Si 伸縮振動及彎曲振動的特徵峰,並在 1,610 cm-1 處偵測到N-H 官能基的峰值。藉由增加 SBA-15 的濃度,可以提升薄膜的機械強度及熱穩定性,以及擴大非晶形區域,且因基質與CO2具有高相容性,能提升對CO2的穿透率及選擇性。隨著SBA-15 載量的增加,可使其在薄膜上分布更加均勻,然而,顆粒聚集現象亦逐漸顯著發生。氣體分離之試驗結果顯示,含有 15 wt.% SBA-15 的薄膜 PVA/PG/SBA-15,可達到711.6 Barrer的最佳 CO2 穿透率及150.75的CO2/N2 選擇性, 明顯優於2008 年 Robeson之研究成果。由於 MMMs 中PG的胺基存在, CO2 得依溶滲機制進行分離。整體而言,本研究製備之MMMs 具有優異的氣體分離效果,特別是應用於分離 CO2、淨化氣體及控制 CO2 排放等方面,未來極具工業應用分離氣體之發展潛力。
摘要(英) This study investigates the addition of spherical mesoporous silica SiO2 Santa Barbara Amorphous-15 (SBA-15), with an average pore size of 3.13 nm, into a solution containing polyvinyl alcohol (PVA) and piperazine glycinate (PG). Characteristic investigations and gas separation tests were conducted on the MMMs. The FTIR spectra confirmed the acetal structures formed by cross-linking at a wavenumber of 1144 cm-1 and the Si-O-Si stretching and bending bond at a wavenumber of 1060 cm-1. Moreover, the peak detected at 1610 cm-1 suggested the presence of the N-H group in the PVA/PG/SBA-15 membrane. Increasing the concentration of SBA-15 resulted in the enhancement of mechanical and thermal performances of the membrane, as well as an increase in the amorphous region. The rise in CO2 permeability and selectivity resulted from the high compatibility and addition of mobile carriers. As SBA-15 loading increased, the dispersion of the filler improved, but there was also a noticeable increase in particle agglomeration. The findings showed that the PVA/PG membrane, with a 15 wt.% of SBA-15 loading PVA/PG/SBA-15, had both the optimal CO2 permeability of 711.6 Barrer and CO2/N2 selectivity of 150.75. These values were placed beyond 2008 Robeson’s upper bound. The solution-diffusion mechanism dominates CO2 separation due to the presence of amine groups from PG in the MMMs. The excellent gas separation performance of the prepared MMMs has a good potential for industrial gas separation, particularly in separating CO2, purifying gases, and controlling CO2 emissions.
關鍵字(中) ★ 無機填料
★ 中孔二氧化矽
★ 球形SBA-15
★ 混合基質薄膜
★ 二氧化碳分離
★ 聚乙烯醇
關鍵字(英) ★ Inorganic filler
★ mesoporous silica
★ spherical SBA-15
★ mixed matrix membrane
★ carbon dioxide separation
★ polyvinyl alcohol
論文目次 摘要 i
Abstract iii
Acknowledgment iv
Table of Contents v
List of Figures ix
List of Tables xi
Chapter 1 Introduction 1
Chapter 2 Literature Review 7
2.1 Current CO2 separation technologies 7
2.2 Types of membranes used for separation 12
2.2.1 Polymeric membranes 12
2.2.2 Inorganic membranes 16
2.2.3 Mixed-matrix membranes (MMMs) 17
2.3 Potential fillers for Mixed Matrix Membranes 22
2.3.1 Mesoporous silica SBA-15 23
2.3.2 Zeolites 24
2.3.3 Graphene (GO) 25
2.3.4 Carbon nanotubes 26
2.3.5 Metal-organic framework (MOF) 26
2.4. Transport theory for gas membrane separation 28
2.4.1 Gas transport mechanisms in porous membranes 28
2.4.2 Gas transport mechanisms in dense (non-porous) membranes 29
2.4.3 Limitations of polymeric membranes 33
2.5 Membrane fabrication techniques 34
2.5.1 Solution casting technique 34
2.5.2 Phase-Inversion technique 34
2.5.3 Dip-coating technique 35
2.5.4 Spin-coating technique 35
2.6 Influential factors on the structure and MMMs performance 38
2.6.1 Crystallinity and glass transition temperature 38
2.6.2 Free volume 39
2.6.3 Swelling 40
2.6.4 Crosslinking 41
2.6.5 Choice of filler and polymer 42
2.6.6 Filler dispersion 42
2.6.7 Filler and polymer interfacial interaction 44
2.6.8 Plasticization and physical aging 45
2.7 Modification methods for MMMs 47
2.7.1 Filler size, shape and loading modification. 48
2.7.2 Adding additives to MMMs. 49
2.7.3 Filler surface adjustment 52
2.7.4 In-situ synthesis of MMM 52
2.8 Design thinking for the research proposal 53
Chapter 3 Materials and Methods 55
3.1 Materials 55
3.2 Membrane preparation 55
3.2.1 Synthesis of piperazine glycinate salt 55
3.2.2 Synthesis of spherical SBA-15 56
3.2.3 Synthesis of PVA/PG and PVA/PG/SBA-15 57
3.2.4 CO2/N2 gas permeation test 59
3.3 Characterization of spherical SBA-15 filler and MMMs 61
3.3.1 Filler characterization 61
3.3.2 Membrane characterization 62
Chapter 4 Results and Discussion 63
4.1 Characterization of SBA-15 fillers 63
4.1.1 Thermal properties of SBA-15 fillers 63
4.1.2 Chemical properties of SBA-15 fillers 64
4.1.3 Morphological and structural properties of SBA-15 fillers 66
4.1.4 Textural properties of SBA-15 fillers 67
4.2 Characterization of MMMs 69
4.2.1 Chemical properties of MMMs 69
4.2.2 Morphologies properties of MMMs 70
4.2.3 Structural properties of MMMs 72
4.2.4 Thermal properties of MMMs 73
4.2.5 Mechanical properties of MMMs 74
4.3 Membrane separation performance 75
4.3.1 The effect of SBA-15 loading on CO2/N2 separation of PVA/PG/SBA-15 MMMs 75
4.3.2 Comparison of PVA/PG/SBA-15 MMMs with previous research 79
4.4 Proposed mechanisms of MMMs 81
Chapter 5 Conclusions and Recommendations 83
5.1 Conclusions 83
5.2 Recommendations 84
Bibliography 87
Appendix 105
參考文獻 Abedini, R., Mosayebi, A., Mokhtari, M. (2018). Improved CO2 separation of azide cross-linked PMP mixed matrix membrane embedded by nano-CuBTC metal organic framework. Process Safety and Environmental Protection, 114, 229-239.
Afzali, A., Maghsoodlou, S., Noroozi, B. (2015). Nanoporous Polymer/Carbon Nanotube Membrane Filtration: The “How-To” Guide to Computational Methods. In.
Alqaheem, Y., Alomair, A., Vinoba, M., Pérez, A. (2017). Polymeric Gas-Separation Membranes for Petroleum Refining. International Journal of Polymer Science, 2017(1), 4250927.
Arabi Shamsabadi, A., Riazi, H., Soroush, M. (2018). Chapter 4 - Mixed Matrix Membranes for CO2 Separations: Membrane Preparation, Properties, and Separation Performance Evaluation. In A. Basile E. P. Favvas (Eds.), Current Trends and Future Developments on (Bio-) Membranes (pp. 103-153). Elsevier.
Askadskii, A., Popova, M., Matseevich, T., Kurskaya, E. (2013). The Influence of the Degree of Crystallinity on the Glass Transition Temperature of Polymers. Advanced Materials Research, 864-867, 751-754.
Bai, H., Ho, W. S. W. (2011). Carbon Dioxide-Selective Membranes for High-Pressure Synthesis Gas Purification. Industrial & Engineering Chemistry Research, 50(21), 12152-12161.
Baker, R. W. (2004). Membrane Technology and Applications. New York: McGraw-Hill.
Barooah, M., Mandal, B. (2018). Enhanced CO2 separation performance by PVA/PEG/silica mixed matrix membrane. Journal of Applied Polymer Science, 135(28).
Barooah, M., Mandal, B. (2019). Synthesis, characterization and CO2 separation performance of novel PVA/PG/ZIF-8 mixed matrix membrane. Journal of Membrane Science, 572, 198-209.
Basile, A., Iulianelli, A., Gallucci, F., Morrone, P. (2010). Chapter 7 - Advanced membrane separation processes and technology for carbon dioxide (CO2) capture in power plants. In M. M. Maroto-Valer (Eds.), Developments and Innovation in Carbon Dioxide (CO2) Capture and Storage Technology (Vol. 1, pp. 203-242). Woodhead Publishing.
Bastani, D., Esmaeili, N., Asadollahi, M. (2013). Polymeric mixed matrix membranes containing zeolites as a filler for gas separation applications: A review. Journal of Industrial and Engineering Chemistry, 19(2), 375-393.
Bernardo, P., Drioli, E., Golemme, G. (2009). Membrane Gas Separation: A Review/State of the Art. Industrial & Engineering Chemistry Research, 48(10), 4638-4663.
Cai, Y., Wang, Z., Yi, C. H., Bai, Y. H., Wang, J. X., Wang, S. C. (2008). Gas transport property of polyallylamine-poly(vinyl alcohol)/polysulfone composite membranes. Journal of Membrane Science, 310(1-2), 184-196.
Car, A., Stropnik, C., Peinemann, K. V. (2006). Hybrid membrane materials with different metal-organic frameworks (MOFs) for gas separation. Desalination, 200(1-3), 424-426.
Car, A., Stropnik, C., Yave, W., Peinemann, K. V. (2008). Pebax®/polyethylene glycol blend thin film composite membranes for CO2 separation: Performance with mixed gases. Separation and Purification Technology, 62(1), 110-117.
Catalano, J., Myezwa, T., De Angelis, M. G., Baschetti, M. G., Sarti, G. C. (2012). The effect of relative humidity on the gas permeability and swelling in PFSI membranes. International Journal of Hydrogen Energy, 37(7), 6308-6316.
Chen, W. B., Zhang, Z. G., Hou, L., Yang, C. C., Shen, H. C., Yang, K., Wang, Z. (2020). Metal-organic framework MOF-801/PIM-1 mixed-matrix membranes for enhanced CO2/N2 separation performance. Separation and Purification Technology, 250.
Chen, Y. X., Ho, W. S. W. (2016). High-molecular-weight polyvinylamine/piperazine glycinate membranes for CO2 capture from flue gas. Journal of Membrane Science, 514, 376-384.
Cheng, X., Cai, W. B., Chen, X. H., Shi, Z., Li, J. D. (2019). Preparation of graphene oxide/poly(vinyl alcohol) composite membrane and pervaporation performance for ethanol dehydration. RSC Advances, 9(27), 15457-15465.
Cheng, Y. D., Wang, Z. H., Zhao, D. (2018). Mixed Matrix Membranes for Natural Gas Upgrading: Current Status and Opportunities. Industrial & Engineering Chemistry Research, 57(12), 4139-4169.
Comesaña-Gándara, B., Chen, J., Bezzu, C. G., Carta, M., Rose, I., Ferrari, M. C., Esposito, E., Fuoco, A., Jansen, J. C., McKeown, N. B. (2019). Redefining the Robeson upper bounds for CO2/CH4 and CO2/N2 separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity. Energy & Environmental Science, 12(9), 2733-2740.
Dai, Z. D., Bai, L., Hval, K. N., Zhang, X. P., Zhang, S. J., Deng, L. Y. (2016). Pebax®/TSIL blend thin film composite membranes for CO2 separation. Science China-Chemistry, 59(5), 538-546.
Dai, Z. D., Deng, J., Ansaloni, L., Janakiram, S., Deng, L. Y. (2019). Thin-film-composite hollow fiber membranes containing amino acid salts as mobile carriers for CO2 separation. Journal of Membrane Science, 578, 61-68.
Das, M., Perry, J. D., Koros, W. J. (2010). Gas-Transport-Property Performance of Hybrid Carbon Molecular Sieve-Polymer Materials. Industrial & Engineering Chemistry Research, 49(19), 9310-9321.
Dehghani, M., Asghari, M., Mohammadi, A. H., Mokhtari, M. (2017). Molecular simulation and Monte Carlo study of structural-transport-properties of PEBA-MFI zeolite mixed matrix membranes for CO2, CH4 and N2 separation. Computers & Chemical Engineering, 103, 12-22.
Deng, L. Y., Hägg, M. B. (2014). Carbon nanotube reinforced PVAm/PVA blend FSC nanocomposite membrane for CO2/CH4 separation. International Journal of Greenhouse Gas Control, 26, 127-134.
Dilshad, M. R., Islam, A., Sabir, A., Shafiq, M., Butt, M. T. Z., Ijaz, A., Jamil, T. (2017). Fabrication and performance characterization of novel zinc oxide filled cross-linked PVA/PEG 600 blended membranes for CO2/N2 separation. Journal of Industrial and Engineering Chemistry, 55, 65-73.
Dong, G. X., Li, H. Y., Chen, V. K. (2013). Challenges and opportunities for mixed-matrix membranes for gas separation. Journal of Materials Chemistry A, 1(15), 4610-4630.
Ebrahimi, S., Mollaiy-Berneti, S., Asadi, H., Peydayesh, M., Akhlaghian, F., Mohammadi, T. (2016). PVA/PES-amine-functional graphene oxide mixed matrix membranes for CO2/CH4 separation: Experimental and modeling. Chemical Engineering Research & Design, 109, 647-656.
El-Azzami, L. A., Grulke, E. A. (2009). Carbon dioxide separation from hydrogen and nitrogen Facilitated transport in arginine salt-chitosan membranes. Journal of Membrane Science, 328(1-2), 15-22.
Embaye, A. S., Martínez-Izquierdo, L., Malankowska, M., Téllez, C., Coronas, J. (2021). Poly(ether-block-amide) Copolymer Membranes in CO2 Separation Applications. Energy & Fuels, 35(21), 17085-17102.
Farashi, Z., Azizi, N., Homayoon, R. (2019). Applying Pebax-1657/ZnO mixed matrix membranes for CO2/CH4 separation. Petroleum Science and Technology, 37(24), 2412-2419.
Farnam, M., bin Mukhtar, H., bin Mohd Shariff, A. (2021). A Review on Glassy and Rubbery Polymeric Membranes for Natural Gas Purification. ChemBioEng Reviews, 8(2), 90-109.
Favvas, E. P., Figoli, A., Castro-Muñoz, R., Fíla, V., He, X. (2018). Chapter 1 - Polymeric Membrane Materials for CO2 Separations. In A. Basile E. P. Favvas (Eds.), Current Trends and Future Developments on (Bio-) Membranes (pp. 3-50). Elsevier.
Feng, Y., Shamsaei, E., Davies, C. H. J., Wang, H. T. (2015). Inorganic particle enhanced polymer hollow fiber membranes with high mechanical properties. Materials Chemistry and Physics, 167, 209-218.
Fortunato, E., Barquinha, P., Martins, R. (2012). Oxide Semiconductor Thin-Film Transistors: A Review of Recent Advances. Advanced Materials, 24(22), 2945-2986.
Gautam, L., Warkar, S. G., Ahmad, S. I., Kant, R., Jain, M. (2022). A review on carboxylic acid cross-linked polyvinyl alcohol: Properties and applications. Polymer Engineering and Science, 62(2), 225-246.
Ge, L., Zhou, W., Rudolph, V., Zhu, Z. H. (2013). Mixed matrix membranes incorporated with size-reduced Cu-BTC for improved gas separation. Journal of Materials Chemistry A, 1(21), 6350-6358.
Goh, P. S., Ismail, A. F., Sanip, S. M., Ng, B. C., Aziz, M. (2011). Recent advances of inorganic fillers in mixed matrix membrane for gas separation. Separation and Purification Technology, 81(3), 243-264.
Gur, T. M. (1994). Permselectivity of Zeolite Filled Polysulfone Gas Separation Membranes. Journal of Membrane Science, 93(3), 283-289.
Haider, B., Dilshad, M. R., Rehman, M. A. U., Schmitz, J. V., Kaspereit, M. (2020). Highly permeable novel PDMS coated asymmetric polyethersulfone membranes loaded with SAPO-34 zeoilte for carbon dioxide separation. Separation and Purification Technology, 248.
Haider, J., Saeed, S., Qyyum, M. A., Kazmi, B., Ahmad, R., Muhammad, A., Lee, M. (2020). Simultaneous capture of acid gases from natural gas adopting ionic liquids: Challenges, recent developments, and prospects. Renewable and Sustainable Energy Reviews, 123, 109771.
Han, G. L., Chen, Z., Cai, L. F., Zhang, Y. H., Tian, J. F., Ma, H. H., Fang, S. M. (2020). Poly(vinyl alcohol)/carboxyl graphene mixed matrix membranes: High-power ultrasonic treatment for enhanced pervaporation performance. Journal of Applied Polymer Science, 137(14).
Hao, L., Liao, K. S., Chung, T. S. (2015). Photo-oxidative PIM-1 based mixed matrix membranes with superior gas separation performance. Journal of Materials Chemistry A, 3(33), 17273-17281.
Hill, R. J. (2006). Reverse-selective diffusion in nanocomposite membranes. Physical Review Letters, 96(21).
Hosseini, S. S., Li, Y., Chung, T. S., Liu, Y. (2007). Enhanced gas separation performance of nanocomposite membranes using MgO nanoparticles. Journal of Membrane Science, 302(1-2), 207-217.
Huang, Z. D., Bensch, W., Kienle, L., Fuentes, S., Alonso, G., Ornelas, C. (2008). Preparation and characterization of SBA-15 supported cobalt-molybdenum sulfide catalysts for HDS reaction: An all sulfide route to hydrodesulfurization catalysts. Catalysis Letters, 124(1-2), 24-33.
IEA. (2023). CO2 Emissions in 2022. https://www.iea.org/reports/co2-emissions-in-2022, accessed December 2023.
Irvin, C. W., Satam, C. C., Carson Meredith, J., Shofner, M. L. (2019). Mechanical reinforcement and thermal properties of PVA tricomponent nanocomposites with chitin nanofibers and cellulose nanocrystals. Composites Part A: Applied Science and Manufacturing, 116, 147-157.
Ismail, A. F., Lorna, W. (2002). Penetrant-induced plasticization phenomenon in glassy polymers for gas separation membrane. Separation and Purification Technology, 27(3), 173-194.
Jahan, Z., Niazi, M. B. K., Gregersen, O. W. (2018). Mechanical, thermal and swelling properties of cellulose nanocrystals/PVA nanocomposites membranes. Journal of Industrial and Engineering Chemistry, 57, 113-124.
Janakiram, S., Espejo, J. L. M., Hoisæter, K. K., Lindbråthen, A., Ansaloni, L., Deng, L. Y. (2020). Three-phase hybrid facilitated transport hollow fiber membranes for enhanced CO2 separation. Applied Materials Today, 21.
Janakiram, S., Yu, X. Y., Ansaloni, L., Dai, Z. D., Deng, L. Y. (2019). Manipulation of Fibril Surfaces in Nanocellulose-Based Facilitated Transport Membranes for Enhanced CO2 Capture. ACS Applied Materials & Interfaces, 11(36), 33302-33313.
Jawad, Z. A. (2019). Membrane Technology for CO2 Sequestration (1st ed.). CRC Press.
Jeazet, H. B. T., Staudt, C., Janiak, C. (2012). Metal-organic frameworks in mixed-matrix membranes for gas separation. Dalton Transactions, 41(46), 14003-14027.
Kalantari, S., Omidkhah, M., Amooghin, A. E., Matsuura, T. (2020). Superior interfacial design in ternary mixed matrix membranes to enhance the CO2 separation performance. Applied Materials Today, 18.
Kankate, L., Aguf, A., Grossmann, H., Schnietz, M., Tampé, R., Turchanin, A., Gölzhäuser, A. (2017). Vapor Phase Exchange of Self-Assembled Monolayers for Engineering of Biofunctional Surfaces. Langmuir, 33(15), 3847-3854.
Kara, G. K., Esmaeili, E., Kehtari, M., Ghafourian, R., Tadjarodi, A. (2022). A comparative investigation of the synergistic correlation (mechanical-hydrophobicity/hydrophilicity structural behaviors) of a series of surface-metalized polyacrylonitrile fibers by silver nanoparticles (AgPAN): An in-situ surface metallization protocol. Journal of Industrial Textiles, 52.
Karimi, S., Firouzfar, E., Khoshchehreh, M. R. (2019). Assessment of gas separation properties and CO2 plasticization of polysulfone/polyethylene glycol membranes. Journal of Petroleum Science and Engineering, 173, 13-19.
Karunakaran, M., Shevate, R., Kumar, M., Peinemann, K. V. (2015). CO2-selective PEO-PBT (PolyActive™)/graphene oxide composite membranes. Chemical Communications, 51(75), 14187-14190.
Kim, S., Pechar, T. W., Marand, E. (2006). Poly(imide siloxane) and carbon nanotube mixed matrix membranes for gas separation. Desalination, 192(1-3), 330-339.
Kong, C. L., Shintani, T., Tsuru, T. (2010). "Pre-seeding"-assisted synthesis of a high performance polyamide-zeolite nanocomposite membrane for water purification. New Journal of Chemistry, 34(10), 2101-2104.
Kudo, Y., Mikami, H., Tanaka, M., Isaji, T., Odaka, K., Yamato, M., Kawakami, H. (2020). Mixed matrix membranes comprising a polymer of intrinsic microporosity loaded with surface-modified non-porous pearl-necklace nanoparticles. Journal of Membrane Science, 597.
Kursun, F., Isiklan, N. (2016). Development of thermo-responsive poly(vinyl alcohol)-g-poly(N-isopropylacrylamide) copolymeric membranes for separation of isopropyl alcohol/water mixtures via pervaporation. Journal of Industrial and Engineering Chemistry, 41, 91-104.
Kusworo, T. D., Ismail, A. F., Mustafa, A., Matsuura, T. (2008). Dependence of membrane morphology and performance on preparation conditions: The shear rate effect in membrane casting. Separation and Purification Technology, 61(3), 249-257.
Li, Y., Chung, T. S., Cao, C., Kulprathipanja, S. (2005). The effects of polymer chain rigidification, zeolite pore size and pore blockage on polyethersulfone (PES)-zeolite A mixed matrix membranes. Journal of Membrane Science, 260(1-2), 45-55.
Liu, Y., Wei, H., Wang, Z., Li, Q., Tian, N. (2018). Simultaneous Enhancement of Strength and Toughness of PLA Induced by Miscibility Variation with PVA. Polymers, 10(10), 1178.
Lou, Y., Toquer, G., Dourdain, S., Rey, C., Grygiel, C., Simeone, D., Deschanels, X. (2015). Structure evolution of mesoporous silica SBA-15 and MCM-41 under swift heavy ion irradiation. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, 365, 336-341.
Low, Z. X., Budd, P. M., McKeown, N. B., Patterson, D. A. (2018). Gas Permeation Properties, Physical Aging, and Its Mitigation in High Free Volume Glassy Polymers. Chemical Reviews, 118(12), 5871-5911.
Mahajan, R., Burns, R., Schaeffer, M., Koros, W. J. (2002). Challenges in forming successful mixed matrix membranes with rigid polymeric materials. Journal of Applied Polymer Science, 86(4), 881-890.
Mahajan, R., Koros, W. J. (2000). Factors controlling successful formation of mixed-matrix gas separation materials. Industrial & Engineering Chemistry Research, 39(8), 2692-2696.
Makaruk, L., Polańska, H., Mizerski, T. (1979). The effect of chemical structure of derivatives of 1,1-bis(4-hydroxyphenyl)-2,2-propane on the antiplasticization of polycarbonate. Journal of Applied Polymer Science, 23(7), 1935-1942.
McKeen, L. W. (2008). The effect of temperature and other factors on plastics and elastomers, 2d ed. In (Vol. 32). Portland: Ringgold, Inc.
Meshkat, S., Kaliaguine, S., Rodrigue, D. (2020). Comparison between ZIF-67 and ZIF-8 in Pebax® MH-1657 mixed matrix membranes for CO2 separation. Separation and Purification Technology, 235.
Moghadam, F., Omidkhah, M. R., Vasheghani-Farahani, E., Pedram, M. Z., Dorosti, F. (2011). The effect of TiO2 nanoparticles on gas transport properties of Matrimid5218-based mixed matrix membranes. Separation and Purification Technology, 77(1), 128-136.
Mondal, A., Mandal, B. (2013). Synthesis and characterization of crosslinked poly(vinyl alcohol)/poly(allylamine)/2-amino-2-hydroxymethyl-1,3-propanediol/polysulfone composite membrane for CO2/N2 separation. Journal of Membrane Science, 446, 383-394.
Mondal, A., Mandal, B. (2014). CO2 separation using thermally stable crosslinked poly(vinyl alcohol) membrane blended with polyvinylpyrrolidone/polyethyleneimine/tetraethylenepentamine. Journal of Membrane Science, 460, 126-138.
Moore, T. T., Koros, W. J. (2005). Non-ideal effects in organic-inorganic materials for gas separation membranes. Journal of Molecular Structure, 739(1-3), 87-98.
Mushtaq, A., Mukhtar, H., Shariff, A. M. (2019). Performance of Enhanced Polymeric Blend Membranes for the separation of CO2/CH4 mixtures. Afinidad, 76(585), 70-75.
Nakao, S.-i., Yogo, K., Goto, K., Kai, T., Yamada, H. (2019). Advanced CO2 Capture Technologies: Absorption, Adsorption, and Membrane Separation Methods.
Nasir, R., Mukhtar, H., Man, Z., Mohshim, D. F. (2013). Material Advancements in Fabrication of Mixed-Matrix Membranes. Chemical Engineering & Technology, 36(5), 717-727.
Nematollahi, M. H., Babaei, S., Abedini, R. (2019). CO2 separation over light gases for nano-composite membrane comprising modified polyurethane with SiO2 nanoparticles. Korean Journal of Chemical Engineering, 36(5), 763-779.
Nigiz, F. U. (2020). Synthesis and characterization of graphene nanoplate-incorporated PVA mixed matrix membrane for improved separation of CO2. Polymer Bulletin, 77(5), 2405-2422.
Nik, O. G., Chen, X. Y., Kaliaguine, S. (2012). Functionalized metal organic framework-polyimide mixed matrix membranes for CO2/CH4 separation. Journal of Membrane Science, 413, 48-61.
Nordin, N. A. H. M., Ismail, A. F., Mustafa, A., Murali, R. S., Matsuura, T. (2014). The impact of ZIF-8 particle size and heat treatment on CO2/CH4 separation using asymmetric mixed matrix membrane. RSC Advances, 4(94), 52530-52541.
Nordin, N. A. H. M., Ismail, A. F., Mustafa, A., Murali, R. S., Matsuura, T. (2015). Utilizing low ZIF-8 loading for an asymmetric PSf/ZIF-8 mixed matrix membrane for CO2/CH4 separation. RSC Advances, 5(38), 30206-30215.
Mauna Loa Observatory. (2023). Trends in Atmospheric Carbon Dioxide. https://gml.noaa.gov/ccgg/trends/, accessed August 2023.
Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W., Christ, R., Church, J. A., Clarke, L., Dahe, Q., Dasgupta, P. (2014). Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. IPCC.
Pascui, O. F., Lohwasser, R., Sommer, M., Thelakkat, M., Thurn-Albrecht, T., Saalwächter, K. (2010). High Crystallinity and Nature of Crystal−Crystal Phase Transformations in Regioregular Poly(3-hexylthiophene). Macromolecules, 43(22), 9401-9410.
Pedram, M. Z., Omidkhah, M., Amooghin, A. E. (2014). Synthesis and characterization of diethanolamine-impregnated cross-linked polyvinylalcohol/glutaraldehyde membranes for CO2/CH4 separation. Journal of Industrial and Engineering Chemistry, 20(1), 74-82.
Pera-Titus, M. (2014). Porous Inorganic Membranes for CO2 Capture: Present and Prospects. Chemical Reviews, 114(2), 1413-1492.
Porter, M. C. (1989). Handbook of industrial membrane technology. Park Ridge, NJ (USA); Noyes Publications.
Qin, Y., Lv, J. F., Fu, X., Guo, R. L., Li, X. Q., Zhang, J. S., Wei, Z. (2016). High-performance SPEEK/amino acid salt membranes for CO2 separation. RSC Advances, 6(3), 2252-2258.
Rajati, H., Navarchian, A. H., Rodrigue, D., Tangestaninejad, S. (2020). Improved CO2 transport properties of Matrimid membranes by adding amine-functionalized PVDF and MIL-101(Cr). Separation and Purification Technology, 235, 116149.
Ramezani, R., Mazinani, S., Felice, R. D. (2022). State-of-the-art of CO2 capture with amino acid salt solutions. Reviews in Chemical Engineering, 38(3), 273-299.
Reid, B. D., Ruiz-Trevino, A., Musselman, I. H., Balkus, K. J., Ferraris, J. P. (2001). Gas permeability properties of polysulfone membranes containing the mesoporous molecular sieve MCM-41. Chemistry of Materials, 13(7), 2366-2373.
Rezakazemi, M., Amooghin, A. E., Montazer-Rahmati, M. M., Ismail, A. F., Matsuura, T. (2014). State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): An overview on current status and future directions. Progress in Polymer Science, 39(5), 817-861.
Robeson, L. M. (1991). Correlation of Separation Factor Versus Permeability for Polymeric Membranes. Journal of Membrane Science, 62(2), 165-185.
Robeson, L. M. (2008). The upper bound revisited. Journal of Membrane Science, 320(1-2), 390-400.
Rodenas, T., Luz, I., Prieto, G., Seoane, B., Miro, H., Corma, A., Kapteijn, F., Xamena, F. X. L. I., Gascon, J. (2015). Metal-organic framework nanosheets in polymer composite materials for gas separation. Nature Materials, 14(1), 48-55.
Saeed, M., Deng, L. Y. (2016). Carbon nanotube enhanced PVA-mimic enzyme membrane for post-combustion CO2 capture. International Journal of Greenhouse Gas Control, 53, 254-262.
Saeed, M., Rafiq, S., Bergersen, L. H., Deng, L. Y. (2017). Tailoring of water swollen PVA membrane for hosting carriers in CO2 facilitated transport membranes. Separation and Purification Technology, 179, 550-560.
Sanaeepur, H., Ahmadi, R., Amooghin, A. E., Ghanbari, D. (2019). A novel ternary mixed matrix membrane containing glycerol-modified poly (ether-amide) (Pebax 1657)/copper nanoparticles for CO2 separation. Journal of Membrane Science, 573, 234-246.
Sanz, R., Calleja, G., Arencibia, A., Sanz-Pérez, E. S. (2010). CO2 adsorption on branched polyethyleneimine-impregnated mesoporous silica SBA-15. Applied Surface Science, 256(17), 5323-5328.
Serbanescu, O. S., Voicu, S. I., Thakur, V. K. (2020). Polysulfone functionalized membranes: Properties and challenges. Materials Today Chemistry, 17.
Setiawan, W. K., Chiang, K.-Y. (2023). Amine-functionalized biogenic silica incorporation effect on poly (ether-block-amide) membrane CO2/N2 separation performance. Journal of Membrane Science, 680, 121732.
Shahid, S., Nijmeijer, K. (2014). High pressure gas separation performance of mixed-matrix polymer membranes containing mesoporous Fe(BTC). Journal of Membrane Science, 459, 33-44.
Shin, H., Chi, W. S., Bae, S., Kim, J. H., Kim, J. (2017). High-performance thin PVC-POEM/ZIF-8 mixed matrix membranes on alumina supports for CO2/CH4 separation. Journal of Industrial and Engineering Chemistry, 53, 127-133.
Sriupayo, J., Supaphol, P., Blackwell, J., Rujiravanit, R. (2005). Preparation and characterization of α-chitin whisker-reinforced chitosan nanocomposite films with or without heat treatment. Carbohydrate Polymers, 62(2), 130-136.
Suleman, M. S., Lau, K. K., Yeong, Y. F. (2016). Plasticization and Swelling in Polymeric Membranes in CO2 Removal from Natural Gas. Chemical Engineering & Technology, 39(9), 1604-1616.
Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K. S. W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9-10), 1051-1069.
Tong, Z., Ho, W. S. W. (2017). Facilitated transport membranes for CO2 separation and capture. Separation Science and Technology, 52(2), 156-167.
Torstensen, J. O., Heiberg, R. M. L., Deng, L. Y., Gregersen, O. W., Syverud, K. (2019). PVA/nanocellulose nanocomposite membranes for CO2 separation from flue gas. International Journal of Greenhouse Gas Control, 81, 93-102.
Tseng, H. H., Chuang, H. W., Zhuang, G. L., Lai, W. H., Wey, M. Y. (2017). Structure-controlled mesoporous SBA-15-derived mixed matrix membranes for H2 purification and CO2 capture. International Journal of Hydrogen Energy, 42(16), 11379-11391.
Vankelecom, I. F. J., Merckx, E., Luts, M., Uytterhoeven, J. B. (1995). Incorporation of Zeolites in Polyimide Membranes. Journal of Physical Chemistry, 99(35), 13187-13192.
Vankelecom, I. F. J., Scheppers, E., Heus, R., Uytterhoeven, J. B. (1994). Parameters Influencing Zeolite Incorporation in Pdms Membranes. Journal of Physical Chemistry, 98(47), 12390-12396.
Vu, D. Q., Koros, W. J., Miller, S. J. (2003). Mixed matrix membranes using carbon molecular sieves - I. Preparation and experimental results. Journal of Membrane Science, 211(2), 311-334.
Waheed, N., Mushtaq, A., Tabassum, S., Gilani, M. A., Ilyas, A., Ashraf, F., Jamal, Y., Bilad, M. R., Khan, A. U., Khan, A. L. (2016). Mixed matrix membranes based on polysulfone and rice husk extracted silica for CO2 separation. Separation and Purification Technology, 170, 122-129.
Weng, T. H., Tseng, H. H., Wey, M. Y. (2010). Fabrication and characterization of poly(phenylene oxide)/SBA-15/carbon molecule sieve multilayer mixed matrix membrane for gas separation. International Journal of Hydrogen Energy, 35(13), 6971-6983.
Weng, T. H., Tseng, H. H., Wey, M. Y. (2011). Effect of SBA-15 texture on the gas separation characteristics of SBA-15/polymer multilayer mixed matrix membrane. Journal of Membrane Science, 369(1-2), 550-559.
Wu, Y. Z., Guo, Z. Y., Wu, H., Zhu, K. Y., Yang, L. X., Ren, Y. X., Liu, Y. T., Wu, X. Y., Zhao, R., Khan, N. A., Ahmad, N. M., Younas, M., Jiang, Z. Y. (2020). Plasticization- and aging -resistant membranes with venation -like architecture for efficient carbon capture. Journal of Membrane Science, 609.
Xin, Q. P., Ouyang, J. Y., Liu, T. Y., Li, Z., Li, Z., Liu, Y. C., Wang, S. F., Wu, H., Jiang, Z. Y., Gao, X. Z. (2015). Enhanced Interfacial Interaction and CO2 Separation Performance of Mixed Matrix Membrane by Incorporating PolyethylenimineDecorated Metal-Organic Frameworks. ACS Applied Materials & Interfaces, 7(2), 1065-1077.
Xing, R., Ho, W. S. W. (2011). Crosslinked polyvinylalcohol-polysiloxane/fumed silica mixed matrix membranes containing amines for CO2/H2 separation. Journal of Membrane Science, 367(1-2), 91-102.
Yampolskii, Y., Pinnau, I., Freeman, B. (2006). Materials science of membranes for gas and vapor separation. In (Vol. 30). Portland: Ringgold, Inc.
Yave, W., Car, A., Peinemann, K. V. (2010). Nanostructured membrane material designed for carbon dioxide separation. Journal of Membrane Science, 350(1-2), 124-129.
Zhang, M. L., Deng, L. M., Xiang, D. X., Cao, B., Hosseini, S. S., Li, P. (2019). Approaches to Suppress CO2-Induced Plasticization of Polyimide Membranes in Gas Separation Applications. Processes, 7(1).
Zhang, Q., Zhou, M., Liu, X. F., Zhang, B. Q. (2021). Pebax/two-dimensional MFI nanosheets mixed-matrix membranes for enhanced CO2 separation. Journal of Membrane Science, 636.
Zhang, R., Xu, X. Y., Cao, B., Li, P. (2018). Fabrication of high-performance PVA/PAN composite pervaporation membranes crosslinked by PMDA for wastewater desalination. Petroleum Science, 15(1), 146-156.
Zhang, Y., Sunarso, J., Liu, S. M., Wang, R. (2013). Current status and development of membranes for CO2/CH4 separation: A review. International Journal of Greenhouse Gas Control, 12, 84-107.
Zhao, Y. N., Ho, W. S. W. (2012). Steric hindrance effect on amine demonstrated in solid polymer membranes for CO2 transport. Journal of Membrane Science, 415, 132-138.
Zheng, Y. F., Huang, H., Wang, Y., Zhu, J., Yu, J. R., Hu, Z. M. (2021). Poly (vinyl alcohol) based gradient cross-linked and reprogrammable humidity-responsive actuators. Sensors and Actuators B-Chemical, 349.
Zhuang, G. L., Tseng, H. H., Wey, M. Y. (2014). Preparation of PPO-silica mixed matrix membranes by in-situ sol-gel method for H2/CO2 separation. International Journal of Hydrogen Energy, 39(30), 17178-17190.
Zou, J., Ho, W. S. W. (2006). CO2-selective polymeric membranes containing amines in crosslinked poly(vinyl alcohol). Journal of Membrane Science, 286(1-2), 310-321.
指導教授 江康鈺(Kung-Yuh Chiang) 審核日期 2024-8-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明