博碩士論文 955202066 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:18.191.129.241
姓名 邱士弘(Harry Chiou)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 在同儕網路中以興趣為基礎之同儕篩選研究
(Interest-based Peer Selection in P2P network)
相關論文
★ 應用智慧分類法提升文章發佈效率於一企業之知識分享平台★ 家庭智能管控之研究與實作
★ 開放式監控影像管理系統之搜尋機制設計及驗證★ 資料探勘應用於呆滯料預警機制之建立
★ 探討問題解決模式下的學習行為分析★ 資訊系統與電子簽核流程之總管理資訊系統
★ 製造執行系統應用於半導體機台停機通知分析處理★ Apple Pay支付於iOS平台上之研究與實作
★ 應用集群分析探究學習模式對學習成效之影響★ 應用序列探勘分析影片瀏覽模式對學習成效的影響
★ 一個以服務品質為基礎的網際服務選擇最佳化方法★ 維基百科知識推薦系統對於使用e-Portfolio的學習者滿意度調查
★ 學生的學習動機、網路自我效能與系統滿意度之探討-以e-Portfolio為例★ 藉由在第二人生內使用自動對話代理人來改善英文學習成效
★ 合作式資訊搜尋對於學生個人網路搜尋能力與策略之影響★ 數位註記對學習者在線上學習環境中反思等級之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 現今大部分P2P網路搜尋軟體缺乏配對興趣相似peer機制,這些P2P系統會造成網路頻寬資源浪費,以及搜尋品質下降。這種現象的問題是由於缺乏相似興趣的peers配對。因此我們發展一套配對相似興趣的peers,以配對方式來分析出相近興趣的peers。篩選結果會根據該peer的興趣配對出極相似高的其它可能提供回答peers列表,同時針對相似高的提供回答的peers進行搜尋資料,而回傳搜尋結果會依照個人興趣喜好的程度來進行分類與排序。為了降低使用者瀏覽搜尋結果時間,系統會將詢問者瀏覽回饋結果來更新使用者興趣喜好程度。在實驗結果得知,我們提出的配對興趣近似peer方法明顯降低使用者搜尋結果時間,在長期興趣下,提升了P2P網路的搜尋效能的準確性,更貼近詢問者資訊需求。
摘要(英) Currently, most of P2P search engines lack a similar interest peer selection mechanism. Hence, it wastes network bandwidth and degenerate the searching quality. Therefore, we develop an interest-based peer selection mechanism. Our approach discovers other similar peers which calculate the interest similarity between a questioner’s preference and other peers’ preference. So, a questioner can obtain other similar peers which are possibility to answer the questioner’s query. Finally, system can transmit the questioner’s query to other similar peers. The query result is classified and ranked by personalized preference to send the questioner. Our method facilitates to satisfy the questioner information requirement and to reduce the searching time. We use a feedback relevance approach to update a peer interest profile. It provides a filtering unnecessary information approach to aim at questioners’ wanting information. In the experiment result, we show that our approach can reduce the searching time. By recording and utilizing long-term user’s interest, we can improve the precision of retrieval performance and satisfy user’s information requirement.
關鍵字(中) ★ 同儕篩選
★ 個人化檔案
★ 同儕網路
★ JXTA平台
★ 與意相似度
關鍵字(英) ★ semantic similarity
★ JXTA platform
★ peer-to-peer network
★ user profile
★ peer selection
論文目次 摘 要 I
Abstract II
誌 謝 III
Contents IV
List of Figures VI
List of Tables VIII
Chapter 1 Introduction 1
1.1 What is the motivation of this research? 1
1.2 What kinds of problems to be solved? Domain & scope. 3
1.3 Why are the problems significant? Characteristics & challenges 4
1.5 How to solve the problems? Method & systems. 6
1.6 Contribution of our solutions? 7
Chapter 2 Related work 8
2.1 General description of the problems (domain & scope ) 8
2.1.1 Current research status & challenges 8
2.1.2 Various approaches of problem solving 10
2.2 List and describe all the possible approaches of problem solving 14
2.2.1 Academic research 14
2.3 Comparison of various approaches with our approach (SWOT analysis) 21
2.3.1 Strength, Weakness 21
Chapter 3 Method and solution 23
3.1 Methodology & theory 23
3.1.1 Definition, axiom, theorem 23
3.1.1.1 Information collection 27
3.1.1.2 Classified Peers 29
3.1.1.3 Rank Peers 31
3.2 Algorithms 32
3.2.1 Procedure of problem solving 32
Chapter 4 System Implementation 45
4.1 Implementation environment 45
4.1.1 Hardware and software platforms 45
4.1.2 Implementation languages & tools 45
4.2 System architecture 46
High-level system design and analysis( blockdiagrams ) 46
4.2.2 Low-level system design and analysis ( process, flow, database structure ) 47
4.3 System demo 49
4.3.1 User interface, execution results, print screens, etc. 49
4.4 Experience learned form the implementation 54
4.4.1 Difficulties and possible solutions 54
Chapter 5 Experiment and Discussion 55
5.1 Experiment design and setup 55
5.1.1 Experiment parameter 55
5.1.2 Roles, hardware, software, and network requirements setup 55
5.2 Quantitative evaluation 61
5.2.1 Performance evaluation 61
5.2.1.1 Broadcast possibility 61
5.2.1.2 Searching precision 62
Chapter 6 Conclusion and future Work 64
Reference 65
參考文獻 [1] Chawathe, Y., Ratnasamy, S., Breslau, L., Lanham, N., & Shenker, S. (2003, Aug.). Making Gnutella-like P2P Systems Scalable. In Proceedings of ACM SIGCOMM 2003
[2] Ripeanu, M., Foster, I., & Iamnitchi, A. (2002). Mapping the Gnutella network: Properties of large-scale peer-to-peer systems and implications for system design. IEEE Internet Computing Journal, vol. 6, no. 1.
[3] Zhu, Y., & Hu, Y. (2006, Dec.). Enhancing Search Performance on Gnutella-Like P2P Systems. In IEEE Transactions on Parallel and Distributed Systems.
[4] Gnutella website in Gnutella.com from http://www.gnutella.com.
[5] Ravishankar, C. V. (2002, march 21), The Gnutella Protocol Specification verson0.4
[6] An Interested-based Architecture for Peer-to-Peer Network Systems. Chen, Wen-Tsuen, Chao, Chi- Hong and Chiang, Jeng-Long. s.l. : AINA 2006, 2006.
[7] Q. Gao, Z. Qiu, “An Interest-based P2P RDF Query Architecture, “CNDS lab, Peking university, Beijing, China, Proceedings of the First International Conference on Semantics, Knowledge, and Grid (SKG 2005).
[8] P. Haase, R. Siebes, F. van Harmelen, “Peer selection in peer-to-peer networks with semantic topologies,”in: International Conference on Semantics of a Networked World: Semantics for Grid Databases, June 2004, Paris.
[9] Z. Wu and M. Palmer, “Verb Semantics and Lexical Selection,” in Proceedings of the 32nd Annual Meeting of the Associations for Computational Linguistics (ACL'94), pp. 133-138, Las Cruces, New Mexico, 1994.
[10] Yuhua Li, Zuhair A. Bandar, and David McLean, “An Approach for Measuring Semantic Similarity between Words Using Multiple Information Sources,” IEEE Transactions on Knowledge and Data Engineering, pp. 871-882, July/August 2003.
[11] P.W. Lord, R.D. Stevens, A. Brass, and C.A, “Goble. Investigating Semantic Similarity Measures across the Gene Ontology: the Relationship between Sequence and Annotation," Bioinformatics, pp. 1275-1283, 2003
[12] A. Tversky. Features of Similarity. Psycological Review, pp. 327-352, 1977.
[13] M.A. Rodriguez and M.J. Egenhofer, “Determining Semantic Similarity Among Entity Classes from Different Ontologies,” IEEE Tramsactions on Knowledge and Data Engineering, pp. 442-456, March/April 2003.
[14] W. Nejdl, B. Wolf, C. Qu, S. Decker, M. Sintek, A. Naeve, M. Nilsson, M. Palm´er, and T. Risch. EDUTELLA: a P2P Networking Infrastructure based on RDF. In WWW 11 Conference Proceedings, Hawaii, USA, May 2002.
[15] C. Qu, and W. Nejdl, “Interacting the Edutella/JXTA Peer-to-Peer Network with Web Services”, Proceedings of the 2004 International Symposium on Applications and the Internet (SAINT’04), 2004.
[16] W. NEJDL, B. WOLF, S. STAAB, AND J. TANE, Edutella: Searching and annotating resources within an RDF-based P2P network. In Proceedings of the Semantic Web Workshop, 11th International World Wide Web Conference (Honolulu, Hawaii, USA, May 2002).
[17] The Edutella Homepage, http://www.edutella.org/edutella.shtml.
[18] RDF, http://www.w3.org/RDF/.
[19] Datalog, http://www.datalogtechnology.com.
[20] RDF Query Exchange Language (QEL), http://edutella.jxta.org/spec/qel.html.
[21] P. Haase et al. Bibster - a semantics-based bibliographic peer-to-peer system. In F. van Harmelen, S. McIlraith, and D. Plexousakis, editors, Proceedings of the Third International Semantic Web Conference (ISWC2004), LNCS, pages 122–136, Hiroshima, Japan, 2004. Springer
[22] P. Haase, N. Stojanovic, Y. Sure, and J. Volker. Personalized information retrieval in bibster, a semantics-based bibliographic peer-to-peer system. K. Tochtermann and H. Maurer, editors, Proceedings of the 5th International Conference on Knowledge Management (I-KNOW 05), pages 104–111, Graz, Austria, JUL 2005.
[23] BibTeX files , http://bib2web.djvuzone.org/bibtex.html.
[24] ACM Computing Classification System , http://portal.acm.org/ccs.cfm?part=author&coll=portal&dl=GUIDE&CFID=76617060&CFTOKEN=38431768.
[25] X. Xiang, Y. Shi, L. Guo, “Rich Metadata Searches Using the JXTA Content Manager Service”, Proceedings of the 18th International Conference on Advanced Information Networking and Applications - Volume 2, IEEE Computer Society, 2004, p. 624
[26] Metadata search download, http://www.sun.com/software/opensource/java/project_overview.jsp.
[27] Dublin core, http://dublincore.org/
[28] OWL, http://www.w3.org/TR/owl-features/.
[29] J. Broeskstra, A. Kampman, SeRQL: A Second Generation RDF Query Language, SWAD-Europe Workshop on Semantic Web Storage and Retrieval, 13-14 November 2003, Vrije Universiteit, Amsterdam, Netherlands.
[30] Jena, http://jena.sourceforge.net/
[31] Jena API, http://jena.sourceforge.net/ontology/index.html
[32] SPARQL , http://www.w3.org/TR/rdf-sparql-query/.
[33] MESH, http://www.nlm.nih.gov/mesh/.
[34] A. Hliaoutakis P. Raftopoulou E. G.M. Petrakis, G. Varelas. X-Similarity: Com- puting Semantic Similarity between Concepts from Di?erent Ontologies. Journal of Digital Information Management (JDIM), 4(4):233{238, December 2006.
[35] Wordnet, http://wordnet.princeton.edu/.
[36] R. Rada, H. Mili, E. Bicknell, and M. Bletner, 1989, “Development and Application of a Metric on Semantic Nets”, IEEE Transactions on Systems, Man, and Cybernetics, Vol. 19, No. 1, 17-30.
[37] A. Hliaoutakis, “Semantic Similarity Measures in MeSH Ontology and their application to Information Retrieval on Medline,” Master’s thesis, Technical University of Crete, Greek, 2005.
[38] W. Nejld, W. Siberski, U. Thaden, and W.-T. Balke. Top-k query evaluation for schemabased peer-to-peer networks. In Proceedings of 3rd International Semantic Web Conference (ISWC 2004), 2004.
[39] A. Loser, C. Tempich, B. Quilitz, W.-T. Balke, S. Staab, and W. Nejdl. Searching dynamic communities with personal indexes. Technical report, University of Karlsruhe, Institute AIFB, 2005
[40] R. J. Brachman, What is-a is and isn’t: An analysis of taxonomic links in semantic networks. IEEE Computer, /6(10), 30-36, 1983.
[41] Prot?g?, http://protege.stanford.edu/
[42] Y. Sure, S. Bloehdorn, P. Haase, J. Hartmann, and D. Oberle. The SWRC ontology - Semantic Web for Research Communities. In C. Bento, A. Cardoso, and G. Dias, editors, Proceedings of the 12th Portuguese Conference on Artificial Intelligence (EPIA 2005), volume 3803 of LNCS, pages 218 – 231, Covilha, Portugal, Dec 2005. Springer.
[43] Semantic Web for Research Communities, http://ontoware.org/projects/swrc/.
[44] Open Directory Project, http://www.dmoz.org/.
[45] NSG, http://www.isi.edu/nsnam/vint/index.html.
[46] PeerSim, http://peersim.sourceforge.net/.
[47] Gian Paolo Jesi. PEERSIMHOWTO: build a new protocol for the peersim simulation framework. http://peersim.sourceforge.net/tutorial1/tutorial1.html, November 2004.
[48] Oversim, http://www.oversim.org/.
[49] I. BAUMGART, B. HEEP, AND KRAUSE, S. Oversim: A flexible overlay network simulation framework. In Proc. of IEEE Global Internet (May 2007).
[50] P2Psim, http://pdos.csail.mit.edu/p2psim/
[51] A. ROWSTRON, P. AND DRUSCHEL. Pastry: Scalable, distributed object location and routing for large-scale peer-to-peer systems. In Proceedings of the 18th IFIP/ACM International Conference on Distributed Systems Platforms (Middleware 2001) (Nov. 2001).
[52] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan. Chord: A scalable peer-to-peer lookup service for internet applications. Submission to ACM SIGCOMM, 2001.
[53] N. J. A. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and A. Wolman,“Skipnet: A scalable overlay network with practical locality properties,” in Proc. USITS, Seattle, WA, Mar. 2003, pp. 113–126.
[54] M´ark Jelasity, Alberto Montresor, and Ozalp Babaoglu. Gossip-based aggregation in large dynamic networks. ACM Transactions on Computer Systems, 23(3):219– 252, August 2005.
[55] A. Montresor, “A Robust Protocol for Building Superpeer Overlay Topologies,” in Proceedings of the 4th International Conference on Peerto- Peer Computing (P2P 2004). Zurich, Switzerland: IEEE, Aug. 2004, pp. 202–209.
[56] M. Jelasity and O. Babaoglu. T-Man: Fast gossip-based construction of large-scale overlay topologies. Technical Report UBLCS-2004-7, University of Bologna, Department of Computer Science, Bologna, Italy, May 2004.
[57] D. S. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J. Pruyne, B. Richard, S. Rollins, and Z. Xu, “Peer-to-peer computing,” Technical Report HPL-2002-57, HP Lab, 2002.
[58] W. B. Croft, S. Cronen-Townsend, and V. Larvrenko. Relevance feedback and personalization: A language modeling perspective. In DELOS Workshop: Personalisation and Recommender Systems in Digital Libraries, 2001.
[59] Tempich, C., Staab, S., Wranik, A.: REMINDIN': Semantic query routing in peerto- peer networks based on social metaphors. In: Proc. of the 13th Int. World Wide Web Conference, WWW 2004, 2004.
[60] M. Ehrig et al. Towards evaluation of peer-to-peer-based distributed knowledge management systems. In L. van Elst et al., editors, “Agent-Mediated Knowledge Management International Symposium AMKM 2003” Stanford, CA, USA, LNAI, pages 73–88. Springer, Berlin, 2003.
[61] T. K. Landauer, S. T. Dumais, A solution to Plato's problem: The Latent Semantic Analysis theory of the acquisition, induction, and representation of knowledge. Psychological Review, 104, 211-240, 1997.
[62] Microsoft Access, http://office.microsoft.com/zh-tw/access/default.aspx.
[63] Brase, J., and Painter, M. (2004). Inferring Metadata for a Semantic Web Peer-to-Peer Environment. Educational Technology & Society, 7 (2), 61-67.
[64] Iyer, S., Rowstron, A. & Druschel, P. (2002). Squirrel: A decentralized peer-to-peer Web cache. In Proceedings of ACM Symposium on Principles of Distributed Computing, PODC.
[65] A. Puerta, J. Egar, S. Tu, & M. Musen. A Multiple-Method Knowledge-Acquisition Shell for the Automatic Generation of Knowledge-Acquisition Tools. Sixth Workshop on Knowledge Acquisition for Knowledge-Based Systems, Banff, Alberta, 20-1 to 20-19. 1992.
[66] H. Knublauch. Ontology-Driven Software Development in the Context of the Semantic Web: An Example Scenario with Prot?g?/OWL. International Workshop on the Model-Driven Semantic Web, Monterey, CA, 2004.
[67] M. J. O'Connor, H. Knublauch, S. W. Tu, B. Grossof, M. Dean, W. E. Grosso, M. A. Musen. Supporting Rule System Interoperability on the Semantic Web with SWRL. Fourth International Semantic Web Conference (ISWC2005), Galway, Ireland, 2005.
[68] M. J. O'Connor, H. Knublauch, S. W. Tu, & M. A. Musen. Writing Rules for the Semantic Web Using SWRL and Jess. 8th International Protege Conference, Protege with Rules Workshop, Madrid, Spain, 2005.
[69] M. Crubezy, M. J. O'Connor, D. L. Buckeridge, Z. S. Pincus, & M. A. Musen. Ontology-Centered Syndromic Surveillance for Bioterrorism. IEEE Intelligent Systems,20(5):26-35. 2005.
[70] Tsoumakos, D., & Roussopoulos, N.(2003). Adaptive Probabilistic Search for Peer-to-Peer Networks. In 3rd IEEE Intl Conference on P2P Computing
指導教授 楊鎮華(Stephen J.H. Yang) 審核日期 2008-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明