參考文獻 |
[1] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining association
rules. In Jorge B. Bocca, Matthias Jarke, and Carlo Zaniolo, editors, Proc. 20th
Int. Conf. Very Large Data Bases, VLDB, pages 487–499. Morgan Kaufmann, 12–
15 1994. ISBN 1-55860-153-8. URL citeseer.ist.psu.edu/agrawal94fast.
html.
[2] Mika Klemettinen, Heikki Mannila, Pirjo Ronkainen, Hannu Toivonen, and
A. Inkeri Verkamo. Finding interesting rules from large sets of discovered association
rules. In Nabil R. Adam, Bharat K. Bhargava, and Yelena Yesha, editors,
Third International Conference on Information and Knowledge Management
(CIKM’94), pages 401–407. ACM Press, 1994. URL citeseer.ist.psu.edu/
klemettinen94finding.html.
[3] Rakesh Agrawal, Tomasz Imieli′nski, and Arun Swami. Mining association rules
between sets of items in large databases. In SIGMOD ’93: Proceedings of the 1993
ACM SIGMOD international conference on Management of data, pages 207–216,
New York, NY, USA, 1993. ACM. ISBN 0-89791-592-5. URL http://doi.acm.
org/10.1145/170035.170072.
[4] Jiawei Han, Micheline Kamber, and Jenny Chiang. Mining multi-dimensional association
rules using data cubes. Technical Report CMPT-TR-97-06, Database Systems
Research Lab. School of Computing Science, Simon Fraser University, 1997.
[5] Micheline Kamber, Jiawei Han, and Jenny Chiang. Metarule-guided mining of
multi-dimensional association rules using data cubes. In Knowledge Discovery
and Data Mining, pages 207–210, 1997. URL citeseer.ist.psu.edu/article/
kamber97metaruleguided.html.
[6] Ramakrishnan Srikant and Rakesh Agrawal. Mining generalized association rules.
Future Generation Computer Systems, 13(2–3):161–180, 1997. URL citeseer.
ist.psu.edu/srikant95mining.html.
[7] J. Han and Y. Fu. Discovery of multiple-level association rules from large databases.
In Proc. of 1995 Int’l Conf. on Very Large Data Bases (VLDB’95), Z‥urich,
Switzerland, September 1995, pages 420–431, 1995. URL citeseer.ist.psu.edu/
han95discovery.html.
[8] Meng-Feng Tsai and Yi-Ming Lee. Mining self-derivable multilevel fp-tree from
a transactional database. Master’s thesis, National Central University, Taoyuan,
Taiwan, 2006.
[9] Sanjay Agrawal, Eric Chu, and Vivek Narasayya. Automatic physical design tuning:
workload as a sequence. In SIGMOD ’06: Proceedings of the 2006 ACM SIGMOD
international conference on Management of data, pages 683–694, New York, NY,
USA, 2006. ACM. ISBN 1-59593-434-0. doi: http://doi.acm.org/10.1145/1142473.
1142549.
[10] Meng-Feng Tsai and Jin-Tang Lin. Efficient computation of continuous aggregation
queries on data warehouse. Master’s thesis, National Central University, Taoyuan,
Taiwan, 2006.
[11] W. H. Inmon and Ch. Kelley. Rdb/VMS: Developing the Data Warehouse. QED
Publishing Group/John Wiley, 1993. ISBN 0-471-56920-8.
[12] Jiawei Han. Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2005. ISBN 1558609016.
[13] Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns without candidate
generation. SIGMOD Rec., 29(2):1–12, 2000. ISSN 0163-5808. URL http://doi.
acm.org/10.1145/335191.335372.
[14] Maurice A. W. Houtsma and Arun N. Swami. Set-oriented mining for association
rules in relational databases. In ICDE ’95: Proceedings of the Eleventh International
Conference on Data Engineering, pages 25–33, Washington, DC, USA, 1995. IEEE
Computer Society. ISBN 0-8186-6910-1.
[15] Jong Soo Park, Ming-Syan Chen, and Philip S. Yu. An effective hash based algorithm
for mining association rules. In Michael J. Carey and Donovan A. Schneider,
editors, Proceedings of the 1995 ACM SIGMOD International Conference on
Management of Data, pages 175–186, San Jose, California, 22–25 1995. URL
citeseer.ist.psu.edu/park95effective.html.
[16] Ashok Savasere, Edward Omiecinski, and Shamkant B. Navathe. An efficient algorithm
for mining association rules in large databases. In Umeshwar Dayal, Peter
M. D. Gray, and Shojiro Nishio, editors, VLDB’95, Proceedings of 21th International
Conference on Very Large Data Bases, September 11-15, 1995, Zurich,
Switzerland, pages 432–444. Morgan Kaufmann, 1995. ISBN 1-55860-379-4.
[17] Sameet Agarwal, Rakesh Agrawal, Prasad M. Deshpande, Ashish Gupta, Jeffrey F.
Naughton, Raghu Ramakrishnan, and Sunita Sarawagi. On the computation of multidimensional
aggregates. In T. M. Vijayaraman, Alejandro P. Buchmann, C. Mohan,
and Nandlal L. Sarda, editors, Proc. 22nd Int. Conf. Very Large Databases,
VLDB, pages 506–521. Morgan Kaufmann, 3–6 1996. ISBN 1-55860-382-4. URL
citeseer.ist.psu.edu/agarwal96computation.html.
[18] Venky Harinarayan, Anand Rajaraman, and Jeffrey D. Ullman. Implementing data
cubes efficiently. In SIGMOD ’96: Proceedings of the 1996 ACM SIGMOD international
conference on Management of data, pages 205–216, New York, NY, USA,
1996. ACM. ISBN 0-89791-794-4. URL http://doi.acm.org/10.1145/233269.
233333.
[19] Ralph Kimball and Margy Ross. The Data Warehouse Toolkit: The Complete Guide
to Dimensional Modeling (Second Edition). Wiley, April 2002. ISBN 0471200247.
[20] The TPC-DS benchmark.
http://www.tpc.org/tpcds/tpcds.asp.
[21] IBM RedBrick Warehouse.
http://www-306.ibm.com/software/data/informix/redbrick/.
[22] Himanshu Gupta. Selection of views to materialize in a data warehouse. In ICDT,
pages 98–112, 1997. URL citeseer.ist.psu.edu/gupta97selection.html.
[23] Himanshu Gupta, Venky Harinarayan, Anand Rajaraman, and Jeffrey D. Ullman.
Index selection for OLAP. In ICDE, pages 208–219, 1997. URL citeseer.ist.
psu.edu/article/gupta97index.html. |