博碩士論文 90541002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:86 、訪客IP:18.224.52.125
姓名 林正國(Cheng-Kuo Lin)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 深次微米變晶式高電子移導率電晶體特性研究及其在單晶微波積體電路上之應用
(Investigation of Deep Submicron Metamorphic HEMTs and Application on Monolithic Microwave Integrated Circuits)
相關論文
★ 增強型異質結構高速移導率電晶體大信號模型之建立及其在微波放大器之應用★ 空乏型暨增強型Metamorphic HEMT之製作與研究
★ 增強型與空乏型砷化鋁鎵/砷化銦鎵假晶格高電子遷移率電晶體: 元件特性、模型與電路應用★ 氧化鋁基板上微波功率放大器之研製
★ 氧化鋁基板上積體化微波降頻器電路之研製★ 順序特徵結構設計研究及其應用在特徵模子去耦合與最小特徵值靈敏度
★ 順序特徵結構設計研究及其應用在最大強健穩定度與最小迴授增益★ LDMOS功率電晶體元件設計、特性分析及其模型之建立
★ CMOS無線通訊接收端模組之設計與實現★ 積體化微波被動元件之研製與2.4GHz射頻電路設計
★ 異質結構高速移導率電晶體模擬、製作與大訊號模型之建立★ 氧化鋁基板微波電路積體化之2.4 GHz接收端模組研製
★ 氧化鋁基板上積體化被動元件及其微波電路設計與研製★ 二維至三維微波被動元件與射頻電路之設計與研製
★ CMOS射頻無線通訊發射端電路設計★ 次微米金氧半場效電晶體高頻大訊號模型及應用於微波積體電路之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 高速電子移導率電晶體設計概念在1978年被提出,而進一步在1980年利用砷化鋁鎵/砷化鎵(AlGaAs/GaAs) 化合物材料系統成功實現此設計概念。為了進一步提升元件特性,在1985年提出了砷化鎵基板上(GaAs substrate)虛擬式通道(pseudomorphic channel)之概念,使用銦含量最高百分之二十之砷化銦鎵(InGaAs)高電子移導率之材料,進一步提升元件傳導帶之不連續性(Conduction-band discontinuity),與元件直流與高頻之特性。另一方面在磷化銦(InP)基板上利用晶格常數與高銦含量之砷化銦鎵之材料相近之優點,成長銦含量高達百分之五十之砷化銦鎵之材料,元件高頻特性更可進一步提升。
然而,磷化銦基板機械強度不足,使得基板面積受限於4吋基板,在量產製程上導至良率與價格上受限,因此在砷化鎵基板上成長高銦含量之砷化銦鎵為高速電子移導率電晶體發展之方向。在1989年Alain Cappy提出了在砷化鎵基板上利用變晶式(metamorphic)分子束磊晶式成長技術,成功磊晶高銦含量之砷化銦鎵之材料系統。因此在本論文中是研究在砷化鎵基板上利用變晶式(metamorphic)成長之砷化銦鋁/砷化銦鎵 (InAlAs/InGaAs) 化合物材料系統高電子移導率場效應電晶體。進一步利用磊晶的技術,與製程方法進一步提升元件直流、高頻、崩潰電壓與微波功率特性。
在第二章中,我們與博達科技(Procomp Informatics) 合作利用分子束磊晶技術,在砷化鎵基板上成長變晶式(metamorphic)層,並結合虛擬式通道(pseudomorphic channel)磊晶技術,進一步增加元件砷化銦鋁/砷化銦鎵(InAlAs/InGaAs)傳導帶之不連續性(Conduction-band discontinuity),電子移導率(electron mobility)。在與傳統晶格常數相通之電晶體比較下元件高頻及功率特性進一步提升。
傳統上提升場效應電晶體特性之方法,就是縮短閘極長度,提升元件高頻特性,因此在第三章,我們改變不同閘極長度在砷化銦鋁/砷化銦鎵(InAlAs/InGaAs)變晶式電晶體上,分析元件短通道效應,與元件傳輸時間之特性,並進一步萃取傳導電子在電子通道層中之飽和速度。另外一方面,我們發展完整的單晶微波積體電路之製作流程,並成功製作出全國學術界第一個次微米變晶式電晶體毫米波積體電路,其中包含了高隔離度之分佈式微波開關以及Ka頻段二級增益放大器。
在第四章中,我們發展出利用閘極高溫滲透之製程方法,改變元件臨界電壓,使得空乏型元件成為增強型元件,並利用小訊號模型之分析方法,研究高頻特性提升之原因。另外,我們開發出只需要一次電子束微影技術,同時達成不對稱之蝕刻與Gamma Gate之閘極外型,使用元件崩潰電壓進一步提升,進一步提升微波功率特性。而在最後一章結論中,整理及歸納出前三章之實驗結果與重點。
摘要(英) The development of HEMTs started in 1978, immediately after successful experiments on modulation-doped AlGaAs/GaAs heterostructures, which revealed the formation of a two-dimensional electron gas (2DEG) with enhanced electron mobility. Earlier HEMTs utilized the AlGaAs/GaAs system, which was the most widely studied and best understood heterojunction system at that time.
In the mid 1980s, in order to further improve device characteristics, the AlGaAs/InGaAs pseudomorphic HEMTs and high indium composition of InAlAs/InGaAs on GaAs and InP substrates had been realized owing to the higher conduction band offsets considerably, and excellent electron transport characteristics. However, the AlGaAs/InGaAs pHEMT, In content is restricted to 20-25% to preserve high layer quality. Therefore, the conduction band discontinuity is limited. In addition, InP substrates are available only in small diameters, which make it hard to compete with the cost per chip of GaAs transistors fabricated on 6-inch wafers. Therefore it would be desirable to find a way to fabricate high performance transistors with high In-content channel on the less brittle and larger diameter GaAs substrates. The answer to this is the concept of fabricating metamorphic GaAs HEMTs (GaAs mHEMT).
The primary propose of this dissertation is to enhance the InAlAs/InGaAs metamorphic buffer HEMTs performance using molecular beam epitaxial (MBE) techniques, advanced lithography technology and novel fabrication process.
In chapter Ⅱ, we used the metamorphic In0.5Al0.5As buffer layer by inserting an pseudomorphic channel (PC) layer to improve device dc and rf performance, which is compared with the lattice matched (LM) In0.5Ga0.5As/In0.5Al0.5As mHEMTs. In recent years, millimeter wave circuit and device technologies are very attractive, which provide a broadband capacity to meet the increasing demands on the wireless mobile communication. Submicron gate-length devices are therefore required to improve the device gain, noise, and power performance. In chapter Ⅲ, in order to characterize and compare the device performance of submicron In0.5Al0.5As/In0.5Ga0.5As mHEMTs, devices with gate-lengths ranging from 0.25-μm to 0.6-μm, written by the e-beam lithography system, were fabricated. The dc, rf, and delay time analysis of these devices will be presented. In addition, we proposed fully process flows of monolithic microwave circuits, which includes high isolation distributed switch and Ka-band two-stage gain amplifier.
In this chapter Ⅳ, we developed two device fabrication techniques to improve the InAlAs/InGaAs metamorphic HEMTs dc and rf characteristics without any device structure modification. Firstly, we realized the enhancement-mode (E-mode) InAlAs/InGaAs metamorphic HEMT’s on GaAs substrates by using the thermally annealed Schottky metal diffusion approach so as to further improve rf performance compared with pre-anneal devices.
Secondly, we proposed a novel electron beam lithography process flow, which combine an asymmetric wide recess in conjunction with a gamma gate (AG), applying to the fabrication of InAlAs/InGaAs metamorphic HEMTs. The fabricated device using this technique demonstrates the improved off-state breakdown voltage and the reduced impact ionization as compared with the conventional T-gate process. In the final chapter, we summarize the results obtained in this thesis.
關鍵字(中) ★ 單晶微波積體電路
★ 高電子移導率電晶體
★ 變晶式
關鍵字(英) ★ monolithic microwave integrated circuits
★ HEMTs
★ metamorphic
論文目次 TABLE OF CONTENTS
CHINESE ABSTRACT I
ABSTRACT III
TABLE CAPTIONS VIII
FIGURE CAPTIONS Ⅸ
Chapter I Introduction
I.1 Overview of GaAs and InP-based HEMT 1
I.2 Introduction of the InAlAs/InGaAs metamorphic HEMTs 4
I.3 Objectives and Scope of the Present Research 8
Chapter II Pseudomorphic Channel Layer in Metamorphic HEMTs
II.1 Introduction 11
II.2 Pseudomorphic Channel In0.65Ga0.35As layer on In0.5Al0.5As metamorphic layer
II.2 1 Device Structure and Fabrication 12
II.2 2 Device DC and RF Performance 15
II.2 2 Small-Signal Model Analysis 19
II.2.4 0.25-?m T-gate PC-mHEMTs Characteristics 28
II .3 Pseudomorphic Channel In0.45Ga0.55As layer on In0.3Al0.7As metamorphic layer
II.3.1 Device Structure and Fabrication 32
II.3.2 Device DC and RF Performance 34
II.3.3 Device Breakdown Mechanism and RF Power Characteristics 37
II.3.3.1 The mechanism of off-state breakdown in InAlAs/InGaAs HEMTs 39
II.3.3.2 The mechanism of on-state breakdown in InAlAs/InGaAs HEMTs 39
II.3.3.3 Power Performance of LM-mHEMTs and PC-mHEMTs 44
II.3.4 Summary 47
Chapter III Characteristics of In0.5Al0.5As/In0.5Ga0.5As Metamorphic HEMTs and Application on Monolithic Microwave Integrated Circuits
III.1 Introduction 50
III.2 Device Cross-Section and fabrication procedures
III.2.1 Device Structure and Fabrication 51
III.2.2 Bi-layer sub-micron T-gate E-beam lithography 52
III.3 The Characteristics of the InAlAs/InGaAs metamorphic HEMTs with Variable Gate-lengths
III.3.1 Device DC Characteristics 59
III.3.2 Device RF Characteristics 60
III.4 Monolithic Microwave Integrated Circuit Using 0.25-µm InAlAs/InGaAs metamorphic HEMTs 68
III.4.1 MMIC Fabrication Procedures
III.4.1.1 Mesa Isolation 69
III.4.1.2 NiCr thin-film resistor 69
III.4.1.3 Ohmic contact and first metal level 70
III.4.1.4 0.25-μm T-gate Schottky contact 70
III.4.1.5 Silicon Nitride Depositions and Nitride Via 72
III.4.1.6 Second metal level 72
III.4.1.7 BCB via and bridge metal 73
III.4.2 DC-30 GHz distributed switch
III.4.2.1 Introduction 77
III.4.2.2 Design Principle 77
III.4.2.3 SPST Switch Characteristics 79
III.4.3 Two-stage Ka-band gain Amplifier
III.4.3.1 Introduction 82
III.4.3.1 Design Principle, Simulated and Measurement Results 82
III.5 Summary 86
Chapter IV Performance Enhancement by Fabrication Techniques in Metamorphic HEMTs
IV.1 Introduction 87
IV.2 Investigation of performance enhancements by Schottky metal diffusion in InAlAs/InGaAs metamorphic HEMTs
IV.2.1 Introduction 88
IV.2.2 Device cross-section and fabrication procedures 89
IV.2.3 Device results and discussions 92
IV.3 A single step e-beam lithography for asymmetric recess and gamma gate in HEMT fabrication
IV.3.1 Introduction 108
IV.3.2 Analysis of electric field distribution in transistor with asymmetric recess and Gamma gate 109
IV.3.3 E-beam technology for asymmetric recess and gamma gate process 115
IV.3.4 InAlAs/InGaAs mHEMT Results and discussion 121
Chapter V Conclusions 126
REFERENCE 128
PUBLICTION LIST 138
參考文獻 REFERENCE
[1] R. Dingle, H.L. Stormer, A.C. Gossard, and W. Wiegmann, “Electron Mobilites in Modulation-Doped Semiconductor Heterojunction Super lattices”, Appl. Phys. Lett., 33, pp. 6655-678, 1978.
[2] P.C. Chao, S.C. Palmateer, P.M. Smith, U.K. Mishra, K. H. g. duh, and J. C. M. Hwang, “Millimeter-Wave Low-noise High Electron Mobilites Transistors”, IEEE Electron Device Lett., 6, pp. 531-533, 1985.
[3] A.W. Swanson, J. Herb, and M. Young, “First Commercial HEMT Challenges GaAs FETs”, Microwave & RF, 24, pp. 107-110, Nov, 1985.
[4] H. Brech, Doctor thesis, “ "Optimization of GaAs Based High Electron Mobility Transistors by Numerical Simulation” Institute of Microelectons, Vienna, Austria, 1998.
[5] J. G. Ruch, G. S. Kino, "Transport Properties of GaAs," Phys. Rev. 174, pp. 921¬931, 1968.
[6] N. Braslau and P. S. Hauge, "Microwave Measurement of the Velocity-Field Characteristic of GaAs," IEEE Trans. Electron Devices, Vol. 17, No. 8 pp. 616¬622, 1970.
[7] P. A. Houston and A. G. R. Evans, "Electron Drift Velocity in n-GaAs at High-Fields," Solid-State Electronics, Vol. 20, pp. 197-¬204, 1977.
[8] M. A. Littlejohn, K. W. Kim, and H. Tian, "High-Field Transport in InGaAs and Related Heterostructures," in Properties of Lattice¬Matched and Strained Indium Gallium Arsenide, P. Bhattacharya (ed.), INSPEC, the Institution of Electrical Engineers, London, pp. 107¬-116, 1993.
[9] F. Schwierz and J.J. Liou, Modern Microwave Transistors Theory, Design, and Performance. New York; Wiley, 2002.
[10] A. Ketterson, W. T. Masselink, J. S. Gedymin, J. Klem, W. Kopp, H. Morkoc, and K. R.Gleason, “Characteristics of InGaAs/AlGaAs Modulation-Doped Field Effect Trnasitor”, IEEE Trans. Electron Devices, 33, pp. 564-571, 1986.
[11] T. Heenderson. M. Aksun, C. Peng, H. Morkloc, P.C. Chao, P.M. Smith, K. H. G. Duh, and L. F. Lester, “Microwave Performance of a Quarter-Microwave gate low-noise pseudomorphic AlGaAs/InGaAs MODFET”, IEEE Electron Device Lett., 7, pp. 645-647, 1986.
[12] K. Hirose, K. Ohata, T. Mizutani, T. Itoh, and M.Ogawa, “700 mS/mm 2DEGFETs Fabricated from High Mobility MBE-Grown n-AlInAs/InGaAs Heterostructures”, Proc. GaAs and Related Compounds, pp. 529-532, 1985.
[13] M.T. Yang, Y.J. Chan, J.L. Shieh, and J.I. Chyi,” The performance enhancement in metamorphic InAlAs/InGaAs doped-channel FET’s on GaAs substrates”, IEEE Electron Device Lett., 17, pp. 410-412, 1996.
[14] M. Zaknoune, B. Bonte, C. Gaquiere, Y. Cordier, Y. Druelle, D. Theron and Y. Crosnier,” InAlAs/InGaAs metamorphic HEMT with high current density and high breakdown voltage”, IEEE Electron. Device Lett., 19, pp. 345-347, 1998.
[15] M. Zaknoune, Y. Cordier, S. Bollaert, D. Ferre, D. Theron and Y. Crosnier,” 0.1 µm high performance metamorphic In0.32Al0.68As/In0.33Ga0.67As HEMT on GaAs using inverse step InAlAs buffer”, Electron. Lett. 35, pp. 1670-1671, 1999
[16] M. Schlectweg, A. Leuther, A. Tessmann, C. Schwoer ,H. Massler, W. Reinert, M. Lang, U. Nowotny, O. Kappeler, M. Walther, R. Losch, “Millmerter-wave and Mixed-Signal Integrated Circuits Based on Advanced Metamorphci HEMT Technology”, Proceeding of Indium Phosphide and Related Materials Conference, pp. 609-614, 2004.
[17] D. W. Tu, S. Wang, J. S. M. Liu, K. C. Hwang, W. Kong, P.C. Chao, K. Nichols, “High-performance double-recessed InAlAs/InGaAs power metamorphic HEMT on GaAs substrate”, IEEE Microwave and Guided wave Lett., 9, pp. 458-460, 1999.
[18] K. Yuan, K. Radhakrishnan, “High breakdown voltage InAlAs/InGaAs metamorphic HEMT using InGaP graded buffer”, Proceeding of Indium Phosphide and Related Materials Conference, pp. 161-164, 2002.
[19] M. Chertouk, H. Heiss, D. Xu, S. Kraus, W. Klein, G. Bohm, G. Trankle, and G. Weimann, “Metamorphic InAlAs/InGaAs HEMT’s on GaAs substrates with a novel composite channel design,” IEEE Electron Device Lett., vol. 17, pp. 273–275, Jun.1996.
[20] D.M. Gill, B.C. Kane, S.P. Svensson, D.W. Tu, P.N. Uppal, and N.E. Byer, “High performance, 0.1 μm InAlAs/InGaAs high electron mobility transistors on GaAs,” IEEE Electron Device Lett., vol. 17, pp. 328–330, Jul. 1996.
[21] S. Bollaert, Y. Cordier, V. Hoel, M. Zaknoune, H. Happy, S. Lepilliet, and A. Cappy, “Metamorphic In0.4Al0.6As/In0.4Ga0.6As HEMTs on GaAs substrate,” IEEE Electron Device Lett., vol. 20, pp. 123–125, Mar. 1999.
[22] M. Kawano, T. Kuzuhara, H. Kawasaki, F. Sasaki, and H. Tokuda, “InAlAs/InGaAs metamorphic low noise HEMT,” IEEE Microwave Guided Wave Lett., vol. 7, pp. 6–8, Jan. 1997.
[23] H. Happy, S. Bollaert, H. Foure, and A. Cappy, “Numerical analysis of device performance of metamorphic InyAl1-yAs/InxGa1-xAs (0.3≦x≦0.6) HEMTs on GaAs substrate,” IEEE Trans. Electron Devices, vol. 45, pp. 2089-2095, Oct. 1998.
[24] M. Zaknoune, B. Bonte, C. Gaquiere, Y. Cordier, Y. Druelle, D. Theron, and Y. Crosnier, “InAlAs/InGaAs metamorphic HEMT with high current density and high breakdown voltage’, IEEE Electron Device Lett.”, vol. 19, pp. 345-347, 1998.
[25] C. S. Whelan, W. E. Hoke, R. A. McTaggart, P. S. Lyman, P. F. Marsh, R. E. Leoni, S. J. Lichwala, and T. E. Kazior, “High breakdown voltage InAlGaAs/In0.32Ga0.68As metamorphic HEMT for Microwave and mm-wave Power applications”. Proc. IEEE MTT-S Int. Microwave Symposium Digest, June 1999, Anaheim, CA, USA, Vol. 3, pp. 1187-1190.
[26] W. Contrata, and N. Iwata, “Double-doped In0.35Al0.65As/In0.35Ga0.65 As power heterojunction FET on GaAs substrate with 1 W output power”, IEEE Electron Device Lett., vol. 20, pp. 369-371, 1999.
[27] H. Fourre, F. Diette, and A. Cappy, “Selective wet etching of lattice matched InGaAs/InAlAs and metamorphic InGaAs/InAlAs on GaAs using succinic acid/hydrogen peroxide solution,” J. Vac. Sci. Technol., vol. B14, pp. 3400–3402, Sept./Oct. 1996.
[28] J. A. del Alamo, M. H. Somerville, M.H; “Breakdown in millimeter-wave power InP HEMTs: a comparison with GaAs pHEMT's, “ IEEE Journal of Solid-State Circuits, vol. 34, pp. 1204-1211, 1999.
[29] R. Williams, Modren GaAs Processing Methods, Norwood : Artech House, 1990
[30] P. J. Tasker and B. Hughes, “Importance of source and drain resistance to the maximum f T of millimeter-wave MODFETs,” IEEE Electron Device Lett., vol. 10, pp. 291-293, 1989.
[31] R. Anholt, S. Swirhun, “Measurement and Analysis of GaAs Parasitic Capacitances,“ IEEE Trans. Microwave Theory Tech., vol. 39 pp. 1243, 1991.
[32] G. Dambrine et al, “A New Method for Determining the FET Small-Signal Equivalent Circuit,” IEEE Trans. Microwave Theory Tech., vol. 36, pp.1511, 1988.
[33] C. K. Lin, Master Thesis, National Central University, 2001.
[34] N. Moll, M. R. Hueschen, and A. Fisher-Colbrie, “Pulsed-doped AlGaAs/InGaAs pseudomorphic MODFET’s,” IEEE Trans. Electron Devices, vol. 35, pp. 879-886, 1988.
[35] S.R. Bahl, J.A. del Alamo, “Physics of breakdown in InAlAs/n+-InGaAs heterostructure field-effect transistors”, IEEE Trans. Electron Devices, vol. 41, pp. 2268-2275, Dec. 1994
[36] K. Hui, C. Hu, P. George, P.K. Ko, “Impact ionization in GaAs MESFETs”, IEEE Electron Device Letters, vol. 11 , pp. 113-115, Mar. 1990.
[37] K. L. Tan, P. H. Liu, D. C. Streit, R. Dia, A .C. Han, A. Freudenthal, J. Velebir, K. Stolt, J. Lee, M. Bidenbender, R. Lai, H. Wang, B. Allen, “A manufacturable high performance 0.1-μm pseudomorphic AlGaAs/InGaAs HEMT process for W-band MMICs” IEEE GaAs IC Symposium Technical Digest, 1992, pp. 251-254.
[38] A. Endoh, Y. Yamashita, M. Higashiwaki, K. Hikosaka, T. Mimura, S. Hiyamizu, and T. Matsui, “High fT 50-nm-gate lattice-matched InAlAs/InGaAs HEMTs” Proc. Int. Conf. on Indium Phosphide and Related Materials, IPRM, 2000, pp. 87-90.
[39] H. Suehiro, T. Miyata, S. Kuroda, N. Hara, M. Takikawa, IEEE Trans. Electron Devices, 1994; 41:1742.
[40] Y. Awano, M. Kosugi, K. Kosemura, T. Mimura, M. Abe, IEEE Trans. Electron Devices, 1989, 36:2260.
[41] H. Rohdin, C. Y. Su, N. Moll, A. Wakita, A. Nagy, V. Robbins, and M. Kauffman, Proceedings of Intl. Conf. on Indium Phosphide Related Materials, 1997; 357.
[42] C.S. Chang, D. Y. S. Day, S. Chan, “ A analytical two-dimensional simulation for the GaAs MESFET Drain-Induced Barrier Lowering: A Short-Channel Effect” IEEE Trans. Electron Devices, vol. 37, May, 1990, pp. 1182-1186.
[43] N. Moll, M. R. Hueschen, and A. Fisher-Colbrie, “Pulsed-doped AlGaAs/InGaAs pseudomorphic MODFET’s,” IEEE Trans. Electron Devices, vol. 35, pp. 879-886, 1988.
[44] T. Enoki, Y. Ishii, T. Tamamura, “ T-gate process and delay time analysis for sub-1/4-μm-gate InAlAs/InGaAs HEMT's,” Proc. of 3rd Int. Conf. Indium Phosphide and Related Materials, Cardiff, U.K., pp. 371 –376, 1991.
[45] D. Xu, H. Heiss, S. Kraus, M. Sexl, G. Bohm, G. Trankle, G. Weimann, G. Abstreiter, “High-performance double-modulation-doped InAlAs/InGaAs/InAs HFETs,” IEEE Electron Device Letters, vol. 18, pp.323-326, Jul. 1997.
[46] L.D. Nguyen, L.E. Larson, U.K. Mishra, “Ultra-high speed modulation-doped field-effect transistors: a tutorial review,” Proc. of IEEE, vol. 80, pp. 494-518, Apr. 1992.
[47] H. C. Chiu, S. C. Yang, C. K. Lin, M. J. Hwu, H. K. Chiou, Y. J. Chan, “K-Band Monolithic InGaP/InGaAs DCFET Amplifier Using BCB Coplanar Waveguide Technology”, IEEE Electron Device Lett., vol. 25, pp. 253-255, May, 2004.
[48] J. Kim, W. Ko, S. H. Kim, J. Jeong, and Y. Kwon, “A High-performance 40-85 GHz MMIC SPDT Switch Using FET-Integrated Transmission Line Structure,” IEEE Microwave and Wireless Components Lett., vol. 13, pp. 505–507, Dec. 2003.
[49] S.F. Chang, W. L. Chen, J. L. Chen, H. W. Kuo, H. Z. Hsu, “New millimeter-wave MMIC switch design using the image-filter synthesis method”, IEEE Microwave and Wireless Components Lett., I, vol. 14 , pp. 103-150, Mar., 2004.
[50] H. Mizutani and Y. Takayama, “A DC-60 GHz GaAs MMIC switch using novel distributed FET,” IEEE MTT-S Tech. Dig., vol. 1, pp. 439–442, 1997.
[51] U.K. Mishera, A. S. Brown, L. M. Jelloisan, L. H. Hackett, and M. J. Delaney, “High-performance submicormeter AlInAs-GaInAs HEMTs,” IEEE Electron Device Lett., vol. 9, pp. 41-43, 1988.
[52] K.H. Duh, P.C. Chao, S. M. J. Liu, P. Ho, M. Y. Kao, and J. M. Ballingall, “A super low noise 0.1 ?m T-gate InAlAs/InGaAs/InP HEMT,” IEEE Microwave and Guided Lett., vol, 1, pp. 114-116, 1991.
[53] T. Enoki, M. Tomizawa, Y. Umeda, and Y. Ishii, “0.05-mm gate InAlAs/InGaAs high electron mobility transisitor and reduction of its short-channel effects,” Jpn. J. Appl. Phys., vol. 33, pp. 798-803, 1994.
[54] D.M. Gill, B.C. Kane, S.P. Svensson, D.W. Tu, P.N. Uppal, and N.E. Byer, “High performance, 0.1 μm InAlAs/InGaAs high electron mobility transistors on GaAs,” IEEE Electron Device Lett., vol. 17, pp. 328–330, Jul. 1996.
[55] N. Harada, S. Kuroda, T. Katakami, K. Hikosaka, T. Mimura, and M. Abe, “Pt-based gate enhancement-mode InAlAs/InGaAs HEMT’s for large-scale integration,” in Proc. 3rd Int. Conf. InP and Rel. Mat., pp. 377–380, 1991.
[56] K. Chen, T. Enoki, K. Maezawa, K. Arai, and M. Yamamoto, “High performance InP-based enhancement-mode HEMT’s using nonalloyed ohmic contacts and Pt-based buried-gate technologies,” IEEE Trans. Electron Devices, vol. 43, pp. 252–257, 1996.
[57] I. Adesida, A. Mahajan, G. Cueva, ”Enhancement-mode InP-based HEMT devices and applications” Indium Phosphide and Related Materials, 1998 International Conference on , 11-15 May 1998, pp.493 – 496.
[58] A. Mahajan, A, M. Arafa, P. Fay, C. Caneau, and I. Adesida, “Enhancement-mode high electron mobility transistors (E-HEMTs) lattice-matched to InP”, IEEE Trans. Electron Devices, vol. 45, pp. 2422-2429, Dec. 1998
[59] D. C. Dumka, W. E. Hoke, P. J. Lemonias, G. Cueva, and I. Adesida, “ High performance 0.35 μm gate-length monolithic enhancement/depletion-mode metamorphic In0.52Al0.48As/In0.53Ga0.47 As HEMTs on GaAs substrates” IEEE Electron Device Lett., vol. 22, pp. 364–366, Aug. 2001.
[60] P. Robin, L, Ride, S. Brown, L. H. Camnitz, G. W. Wicks, J. D. Berry, and L. F. Eastman, “Depletion- and enhancement-mode AlInAs/InGaAs MODFETs with a recessed gate structure,” in Int. GaAs and Related Compounds, Inst. Phys. Conf. Ser., no. 79, Karuizawa, Japan, 1985, pp. 571-576.
[61] H. Fourre, F. Diette, and A. Cappy, “Selective wet etching of lattice matched InGaAs/InAlAs and metamorphic InGaAs/InAlAs on GaAs using succinic acid/hydrogen peroxide solution,” J. Vac. Sci. Technol., vol. B14, pp. 3400–3402, Sept./Oct. 1996.
[62] N. Harada, S. Kuroda, and K. Hikosaka, “N-InAlAs/InGaAs HEMT DCFL inverter fabricated using Pt-based gate and photochemical dry etching,” IEICE Trans., vol. 10, pp. 1165–1171, 1992.
[63] L. Sadwick, C. Kim, K. Tan, and D. Streit, “Schottky barrier heights of n-type and p-type AlInAs,” IEEE Electron Device Lett., vol.18, pp. 626–628, 1997.
[64] A. Fricke, G. Stareev, T. Kummetz, D. Sowada, J. Mahnss, W. Kowalsky, and K. Ebeling, “1.09-eV Schottky barrier height of nearly ideal Pt/Au contacts directly deposited on n_ and p+n_Al0:48In0:52As layers,” Appl. Phys. Lett., vol. 65, pp. 755–757, 1994.
[65] H. C. Caery, Devices for integrated circuits, John Willey, 1999
[66] R. Soares, GaAs MESFET circuit design, Artech House, 1998.
[67] N. Moll, M. R. Hueschen, and A. Fisher-Colbrie, “Pulsed-doped AlGaAs/InGaAs pseudomorphic MODFET’s,” IEEE Trans. Electron Devices, vol. 35, pp. 879-886, Jul. 1988.
[68] J. Dickmann, H. Dambkes, R. Losch, W. Schlapp, J. Bottcher, and H. Kunzel, “Influence of surface layers on the RF-performance of AlInAs-GaInAs HFETs “, IEEE Trans. Microwave and Guided Wave Letters, vol. 2, pp. 472-474, Dec, 1992.
[69] R. J. Trew and U. K. Mishra, ‘Gate breakdown in MESFETs and HEMTs”, IEEE Electron Device Lett., vol. 12, pp. 524-526, Oct, 1991.
[70] Y. Hori, M. Kuzuhara, Yuji Ando, and M. Mizuta, “Analysis of electric field distribution in GaAs metal–semiconductor field effect transistor with a field-modulating plate”, J. Appl. Phys. vol. 87, April, pp.3483-3487, 2000.
[71] J. C. Huang, P. Saledas, J. Wendler, A. Platzker, W. Boulais, S. Shanfield, W. Hoke, P. Lyman, L. Aucoin, A. Miquelarena, C. Bendard and D. Atwood, “A double-recessed Al0.24GaAs/In0.16GaAs pseudomorphic HEMT for Ka-band power applications”, IEEE Electron Device Lett., vol. 14, pp. 456-458, Sep, 1993.
[72] K. Y. Hur, R.A. Mctaggart, B. W. LeBlanc, W.E. Hoke, P.J. Lemonias, A. B. Miller, T.E. Kazior, and L. M. Aucoin, Technical Digest of the 17th IEEE Gallium Arsenide Integrated Circuit Symposium, San Diego, U.S.A., 29 Oct-1 Nov, 1995, pp. 101-104.
[73] F. Robin, H. Meier, O. J. Homan and W. Bachtold, Proceeding of the 14th Indium Phosphide and Related Materials Conference, Stockholm, Sweden, 12-16 May, 2002, pp. 221-224.
[74] R. Grundbacher, I. Adesida, Y. C. Kao, and A.A. Ketterson, “ Single step lithography for double-recess ed gate pseudomorphic high electron mobility transistors”, J. Vac. Sci. Technol. B 15, vol. 1, pp. 49-52, Jan/Feb, 1997.
[75] J. Li, S.J. Cai, G.Z. Pan, Y.L. Chen, C.P. Wen, and K.L. Wang, “High breakdown voltage GaN FET with field plate”, IEE Electronics Letters, vol. 37, pp.196-196, Feb, 2001.
[76] G. Meneghesso, A. Neviani, R. Oesterholt, M. Matloubian, T. Liu, J. J. Brown, C. Canali and E. Zanoni, “On-state and off-state breakdown in GaInAs/InP composite-channel HEMT's with variable GaInAs channel thickness”IEEE Trans. Electron Devices, vol. 46, pp. 2-9, Jan, 1999.
指導教授 詹益仁(Yi-Jen Chan) 審核日期 2004-9-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明