博碩士論文 90541009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:3.146.255.127
姓名 劉書史(Su-sir Liu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 缺陷改善效應以及環境應力測試對於GaN p-i-n 紫外光偵測器之影響
(Defect reduction and environment stress quality test (ESQT) on GaN p-i-n UV sensor n)
相關論文
★ 高效能矽鍺互補型電晶體之研製★ 高速低功率P型矽鍺金氧半電晶體之研究
★ 應變型矽鍺通道金氧半電晶體之研製★ 金屬矽化物薄膜與矽/矽鍺界面反應 之研究
★ 矽鍺異質源/汲極結構與pn二極體之研製★ 矽鍺/矽異質接面動態啓始電壓金氧半電晶體之研製
★ 應用於單電子電晶體之矽/鍺量子點研製★ 矽鍺/矽異質接面動態臨界電壓電晶體及矽鍺源/汲極結構之研製
★ 選擇性氧化複晶矽鍺形成鍺量子點的光特性與光二極體研製★ 選擇性氧化複晶矽鍺形成鍺量子點及其在金氧半浮點電容之應用
★ 鍺量子點共振穿隧二極體與電晶體之關鍵製程模組開發與元件特性★ 自對準矽奈米線金氧半場效電晶體之研製
★ 鍺浮點記憶體之研製★ 利用選擇性氧化單晶矽鍺形成鍺量子點之物性及電性分析
★ 具有自我對準電極鍺量子點單電洞電晶體之製作與物理特性研究★ 具有自我對準下閘電極鍺量子點單電洞電晶體之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在本篇論文中,我們介紹並製作出一系列各種不同改善結構之GaN紫外光偵檢元件。首先我們利用AlGaN/GaN超晶格結構用以改善GaN p-i-n UV-A sensor 元件特性,運用此結構不僅能夠減少長晶薄膜之間的內應力及防止裂痕;同時阻擋並減少螺旋差排向上延伸,元件的磊晶膜品質、載子的遷移率、缺陷密度等均獲得改善,而利用此結構成長的元件不僅暗電流降低;同時紫外光/可見光的對比值均相較於無超晶格結構者為佳。
而在另外一方面,GaN p-i-n UV-A sensor成長於ELOG之上的結構設計,不僅降低了元件螺旋差排之缺陷,有效降低了暗電流的產生;同時亦增加了紫外光波段的響應值以及紫外光/可見光的對比值,利用此結構成長的元件操作特性均相較於無ELOG結構者為佳。研究結果顯示GaN薄膜生長在1度偏角度基板之上有較低的缺陷密度並呈現出較佳的薄膜品質,我們將GaN紫外光偵檢元件結構成長於1度偏角度基板之上發現元件暗電流降低了約二個數量級,紫外光波段的響應值提昇了約20%,因此生長在1度偏角度基板的元件操作特性均相較於無偏角度基板成長元件為佳。
在AlxGa1-xN/GaN元件UV-B波段(310nm)的量測方面,我們採用了p-AlxGa1-xN漸變層的結構設計(Al成分由0.26漸變至0.13)漸變至表層薄的p-GaN磊晶層,則p-GaN之缺陷密度及接觸電阻值均獲得有效降低,元件的暗電流降低了約二個數量級;在此同時光響應值在紫外光波段提昇了約50%,利用AlxGa1-xN漸變層的結構設計製作出來的元件操作特性均相較於無漸變層的傳統結構設計為佳。
我們同時提出了GaN p-i-n UV-A sensor在環境應力測試之下對元件所造成的影響,我們發現暗電流並不隨著溫度增加而提升;然而經過多次的靜態耐電壓測試(ESD)除了會造成元件暗電流的提升;同時降低紫外光波段的響應值及紫外光/可見光的對比值,這是造成元件劣化的主要因素。再者,我們將元件分別經過靜態耐電壓測試
(ESD)、高溫(HT)、以及高溫高濕(HTHH)測試,我們仍然發現靜態耐電壓測試(ESD)對於元件所造成的影響均相較於高溫(HT)以及高溫高濕(HTHH)測試影響來得大;最後我們進行元件的崩潰電壓測試,而在逆向偏壓4500V將會造成元件的失效;而在元件封裝上方面GaN p-i-n UV-A sensor外表批覆矽膠(silicone)以作為保護層,同時設計了PCB電路板作為光訊號處理模組並且搭配一顆9V電池,完成了單一GaN UV single sensor的元件製作。
最後在紫外光陣列(FPA)製作方面,首先我們簡單完成了單一陣列128x1以及5x5 FPA小陣列試製,用以驗證大陣列FPA製作之可行性,最後我們完成了大面積128x128 GaN p-i-n UV FPA並搭配了Indigo Readout Integrated Circuits (ROIC) 顯像讀出電路可以偵測到明顯的紫外光平面UV影像。
摘要(英) This dissertation presents systematically fabricated GaN p-i-n ultraviolet (UV) photo detectors that have demonstrated improved device structure and superior sensor performance. Studies of the material growth, device fabrication and sensor characterization are described. GaN p-i-n UV-A sensor with a structure of 8-pairs of AlxGa1-xN/GaN superlattices (SLs) grown by MOCVD method, was incorporated into the device. Not only does this device structure eliminate material cracking through strain management, but also significantly decreases the threading dislocation density by acting itself as an effective dislocation filter. The proposed device structure has exhibited excellent epitaxial film qualities, such as improved crystallinity, higher carrier mobility, lower defect levels, and less etching pit density (EPD), and has shown improved performance such as lower dark current, superior response sensitivity in the UV spectrum, and higher UV/visible rejection ratio than those without the SLs structure.
GaN epitaxial material grown using epitaxial lateral overgrowth (ELOG) technique has shown its superiority for GaN p-i-n UV-A sensor application. Due to the minimization of threading dislocations, it is demonstrated that the ELOG technique has reduced the device dark current and increased the responsivity and sharpness of cut-off than that of the traditional design without ELOG design.
GaN layer grown on misorientation angles of a-plane 1o-off-axis sapphire substrate has exhibited excellent film qualities such as enhanced crystallinity, lower defect levels, and less etching pit density. Accordingly, the GaN p-i-n UV-A sensor was first proposed fabricated on 1o off-axis sapphire substrate. The dark current density is decreased by two orders magnitude and the spectrum responsivity is increased 20% than that of traditional on-axis design. A superior device performance can be achieved as device fabricated on 1o off-axis sapphire substrate.
In addition, for applications of AlxGa1-xN/GaN p-i-n UV sensor in UV-B range (310nm), an added a graded AlxGa1-xN (x=0.26
關鍵字(中) ★ 光陣列
★ 缺陷
★ 光響應
★ 暗電流
關鍵字(英) ★ Focal plane array
★ Defect
★ Responsivity
★ Dark current
論文目次 Abstract (in Chinese) ····························································································iii
Abstract (in English) ·····························································································v
Contents ····················································································································vii
Table Captions ··········································································································x
Figure Captions ········································································································xi
CHAPTER 1. Introduction ••••••••••••••••••••••••••••••••••••••1
1.1 The UV radiation••••••••••••••••••••••••••••••••1
1.2 Semiconductors for UV photodetection ••••••••••••••2
1.3 Wide-bandgap semiconductors for UV photodetection
•••••••••••••••••••••••••••••••••••••••••••••3
1.4 Overview of this dissertation ••••••••••••••••••• 4
CHAPTER 2. Types of photodetectors and operation
mechanisms•••••••••••••••••••••••••••••••12
2.1 Photoconductors•••••••••••••••••••••••••••••••••12
2.2 Schottky photodiodes ••••••••••••••••••••••••••••12
2.3 Metal–semiconductor–metal photodiodes •••••••••••13
2.4 p-i-n photodiodes•••••••••••••••••••••••••••••••14
2.5 Material considerations••••••••••••••••••••••••••15
2.6 External quantum efficiency••••••••••••••••••••••15
2.7 Origion of dark current •••••••••••••••••••••••••16
2.8 Sensor responsivity•••••••••••••••••••••••••••••16
CHAPTER 3. Device Fabrication Technology••••••••••••••22
3.1 Epitaxial growth and device processing ••••••••••••22
3.2 Contact material and resistance analysis ••••••••••22
3.3 Device measurement •••••••••••••••••••••••••••• 26
CHAPTER 4. Study of GaN p-i-n UV-A and UV-B sensor••••••40
4.1 Improvements of GaN p-i-n UV-A sensor using AlGaN/GaN
superlattices (SLs) as dislocation filters•••••••••40
4.2 Improvements of GaN p-i-n UV-A sensor by ELOG
technique••••••••••••••••••••••••••••••••••••••44
4.3 Improvements of GaN p-i-n UV-A sensor on 1° off-axis
sapphire substrate •••••••••••••••••••••••••••••47
4.4 Comparison I-V curve and resposivity on SLs, ELOG and
1° off-axis design••••••••••••••••••••••••••••••49
4.5 Improvements of AlGaN/GaN p-i-n UV-B sensor with graded
AlGaN layer for UV-B (280-320nm) detection•••••••• 50
CHAPTER 5. Device environment stress quality test (ESQT) and
focal plane array (FPA) on GaN p-i-n UV sensor
••••••••••••••••••••••••••••••••••••••••94
5.1 Temperature and electrical static discharge (ESD) test
on GaN p-i-n UV-A sensor•••••••••••••••••••••••••94
5.2 High temperature high humidity (HTHH) and electrical
static discharge (ESD)stress effect on GaN p-i-n UV-A
sensor ••••••••••••••••••••••••••••••••••••••••94
5.3 Silicone encapsulation effects on packaged p-i-n UV-A
sensor ••••••••••••••••••••••••••••••••••••••• 99
5.4 UV sensor circuit, PCB Layout and mechanism kits•••101
5.5 GaN p-i-n UV focal plane arrays(FPA) •••••••••••••102
CHAPTER 6. Conclusions and future work•••••••••••••••137
6.1 Conclusions•••••••••••••••••••••••••••••••••• 137
6.2 Future work•••••••••••••••••••••••••••••••••••139
Reference••••••••••••••••••••••••••••••••••••••••140
Vita••••••••••••••••••••••••••••••••••••••••••••150
Publication List (2001-2006)•••••••••••••••••••••• 151
參考文獻 [1] Diffey B L, 2002, Methods 28, 4.
[2] Kolnik J. OGUZMA I H, Brennan K F, Wang R, Ruden P P
and Wang Y, 1995, J. Appl. Phys. 78, 1033.
[3] Goldberg Y A, 1999, Semicond. Sci. Technol. 14, R41.
[4] Razeghi M and Rogalski A, 1996, J. Appl. Phys. 79, 7433.
[5] Caria M, Barberini L, Cadeddu S, Giannattasio A, Lai A,
Rusani A and Sesselego A,2001, Nucl. Instrum Methods
Phys. Res. A 466, 115.
[6] Caria M, Barberini L, Cadeddu S, Giannattasio A, Rusani
A, Sesselego A, D’Auria S and Dubecky F, 2002, Appl.
Phys. Lett. 81, 1506.
[7] Edgar J H, 1994, Properties of Group III Nitrides
(London: INSPEC).
[8] Razeghi M and Rogalski A, 1996, J. Appl. Phys. Lett.
79, 7433.
[9] Yoder M N, 1996, Electron Devices 43, 1633.
[10] Pearton S J, Zolper J C, Shul R J and Ren F, 1999, J.
Appl. Phys. Lett. 86, 1.
[11] Bhattacharya P, 1994, Semiconductor Optoelectronic
Devices (Englewood Cliffs, NJ: Prentice Hall).
[12] Lim B W, Chen Q C, Yang J Y and Khan M A, 1996, Appl.
Phys. Lett. 69, 3761.
[13] Binet F, Duboz J Y, Rosencher E, Scholz F and H¨arle
V, 1996, Appl. Phys. Lett. 69, 1202.
[14] Shen B, Yang K, Zhan L, Chen Z, Zhou Y, Chen P, Zhan
R, Huang Z, Zhou H and Zheng Y, 1999, Japan. J. Appl.
Phys. 38, 767.
[15] Monroy E, Calle F, Garrido J A, Youinou P, Mu˜noz E,
Omn`es F, Beaumont B and Gibart P, 1999, Semicond.
Sci. Technol. 14, 685.
[16] Flannery L B, Harrison I, Lacklison D E, Dykeman R I,
Chen T S and Foxon C T,1997, Mater. Sci. Eng. B 50,307.
[17] Zhao Z M, Jiang R J, Chen P, Xi D J, Luo Z Y, Zhang
R,Schen B,Chen Z Z and Zheng Y D, 2000, Appl. Phys.
Lett. 77, 444.
[18] Qiu C H and Pankove J I, 1997, Appl. Phys. Lett.
70,166.
[19] E. Munoz, E.Monroy, J.L. Pau, 2001, J.phys.Condens.
Matter 13, 258.
[20] Shen B, Yang K, Zhan L, Chen Z, Zhou Y, Chen P, Zhan
R, Huang Z, Zhou H and Zheng Y, 1999, Japan. J. Appl.
Phys. 38, 767.
[21] Monroy E, Calle F, Mu˜noz E, Omn`es F, Beaumont B and
Gibart P,1999, J.Electron. Mater. 28, 240.
[22] Walker D, Zhan X, Saxler A, Kung P, Xu J and Razhegi
M,1997, Appl. Phys. Lett.70, 949.
[23 ] E.Monroy, F.Calle, 2001, Journal of Crystal Growth
230.
[24] W¨urfl J, Abrosimova V, Hilsenbeck J, Nebauer E,
Rieger W and Tr¨ankle G,1999, Microelectron 39, 1737.
[25] Osinsky A, Gangopadhyay S, Yang J W, Gaska R,Kuksenkov
D,Temkin H,Shmagin I K, Chang Y C, Muth J F and Kolbas
R M, 1998, Appl. Phys. Lett. 72,551.
[26] Mu˜noz E, Monroy E, Calle F, S´anchez-Garc´ıa M A,
Calleja E, Omn`es F, Gibart P, Jaque F and Aguirre
de C´arcer I, 1999, Proc SPIE 200, 3629.
[27] Monroy E, Calle F, Angulo C, Vila P, Sanz A, Garrido J
A, Calleja E, Mu˜noz E,Haffouz S, Beaumont B, Omn`es
F and Gibart P, 1998, Appl. Opt. 37, 5058.
[28] Carrano J C, Li T, Grudowski P A, Eiting C J,Dupuis R
D and Campbell J C, 1998,J. Appl. Phys. 83, 6148.
[29] Palacios T, Monroy E, Calle F and Omn`es F, 2002,
Appl. Phys. Lett 81, 1902.
[30] Monroy E, Calle F, Mu˜noz E and Omn`es F, 1999, Appl.
Phys. Lett. 74, 3401.
[31] Walker D, Monroy E, Kung P, Wu J, Hammilton M, S
´anchez F J, Diaz J and Razeghi M, 1999, Appl. Phys
Lett. 74, 762.
[32] Monroy E, Palacios T, Haninaut O, Omnes F, Calle F and
Hochedez J-F, 2002,Appl. Phys. Lett. 80, 3198.
[33] Monroy E, Calle F, Munoz E and Omnes F, 1999, Phys.
Status Solidia. 176 157.
[34] Walker D, Monroy E, Kung P, Wu J, Hammilton M,Sanchez
F J, Diaz J and Razeghi M, 1999, Appl.Phys. Lett. 74,
762.
[35] Monroy E, Mu˜noz E, S´anchez F J, Calle F, Calleja E,
Beaumont B, Gibart P, Mu˜noz J A and Cuss´o F, 1998,
Semicond. Sci. Technol. 13, 1024.
[36] Walker D, Saxler A, Kung P, Zhang X, Hamilton M, Diaz
J and Razeghi M, 1998,Appl. Phys. Lett. 72, 3303.
[37] Monroy E, Hamilton M, Walker D, Kung P, S´anchez F J
and Razeghi M, 1999,Appl. Phys. Lett. 74, 1171.
[38] Osinsky A, Gangopadhyay S, Gaska R, Williams B, Khan M
A, Kuksenkov D and Temkin H, 1997, Appl. Phys. Lett.
71, 2334.
[39] Carrano J C, Li T, Grudowski P A, Eiting C J, Lambert
D, Schaub J D, Dupuis R D and Campbell J C, 1998,
Electron. Appl. Phys Lett. 34, 692.
[40] Xu G Y, Salvador A, Kim W, Fan Z, Lu C, Tang H, Morkoc
¸ H, Smith G, Estes M, Goldenberg B, Yang W and
Krishnankutty S, 1997, Appl. Phys. Lett. 71, 2154.
[41] Yang W, Nohova T, Krishnankutty S, Torreano R,
McPherson S and Marsh H, 1998, Appl. Phys. Lett. 73,
1086.
[42] Walker D, Kumar V, Mi K, Sandvik P, Kung P, Zhang X H
and Razeghi M, 2000, Appl. Phys. Lett. 76, 403.
[43] Collins C J, Li T, Beck A L, Dupuis R D, Campbell J C,
Carrano J C, Schurman M J and Ferguson I A, 1999,
Appl. Phys. Lett. 75, 2138.
[44] Zhang X, Kung P, Walker D, Piotrowski J, Rogalski A,
Saxler A and Razeghi M,1995, Appl. Phys. Lett. 67,
2028.
[45] Peter P.Chow, Jody J. Klaassen, 2000, Proceeding of
SPIE. Vol.3948.
[46] Pulfrey D L and Nener B D, 1998, Solid-State Electron.
42, 1731.
[47] Tarsa E J, Kozodoy P, Ibbetson J, Keller B P, Parish G
and Mishra U, 2000, Appl.Phys. Lett. 77, 316.
[48] M.Razeghi and A. Rogalski J, 1996, Appl. Phys. Lett.
79, 10.
[49] John C. Carrano et.al, 2000, Proceedings of SPIE.
Vol.3948.
[50] M. Razeghi and A. Rogalski,1996, J. Appl. Phys. 79,
7433-7473.
[51] Q. Z. Liu and S. Lau, 1998, Solid-state Electron. 42,
677.
[52]. Q. Z. Liu, L. S. Yu, F. Deng, S. S. Lau, Q. Chen, and
M. A. Khan, and M. A. Khan, 1997, Appl. Phys. Lett.
71, 1658 .
[53] S. E. Mohney and S. S. Lau, 1998, GaN and Related
Materials II (Gordon and Breach, New York).
[54]. Q. Z. Liu, S. S. Lau, N. R. Perkins, and T. F. Kuech,
1996, Appl. Phys. Lett.69, 1772 .
[55]. J. Y. Duboz, F. Binet, N. Laurent, E. Rosencher, F.
Scholz, V. Harle, D. Briot, B. Gil, and R. L.
Aulombard, 1996, Mater. Res. Soc. SYMP. Proc. 449,
1085.
[56]. L. L. Smith, S. W. King, R. J. Nemanich, and R. F.
Davis, 1996, J. Electron. Mater. 25, 805.
[57]. S. W. King, L. L. Smith, J. P. Barnak, J. H. Ku, J.
A. Christman, M. C. Benjamin, M. D. Bremser, R. J.
Nemanich, and R. F. Davis, 1996, Mater. Res. Soc.
Symp. Proc. 395, 739.
[58]. N. V. Edwards, M. D. Bremser, T. W. Weeks, Jr., R. S.
Kem, R. F. Davis, and D. E. Aspnes, 1996, Appl.Phys.
Lett. 69, 2065.
[59]. S. N. Mohammad, Z. F. Fan, W. Kim, O. Aktas, A. E.
Botchkarev, A. Salvador, and H. Morkoc, 1996,
Electron Lett. 32, 598.
[60]. M. R. H. Khan, T. Detchprom, P. Hacke, K. Hiramatsu,
and N. Sawaki, 1995, J. Phys. D 28, 1169.
[61]. R. Sporken, C. Silien, F. Malengreau, K. Grigorov, R.
Caudano, F. J. Sanchez, E. Calleja, E. Munoz, B.
Beaumont, and Pierre GIBART, 1997, MRS Intermet J.
Nitride Semicond. Res. 2, 23.
[62]. S. C. Binari, H. B. Dietrich, G. Kelner, L. B.
Rowland, K. Doverspike, and D. K. Gaskill, 1994,
Eletron. Lett. 30, 909.
[63]. J. D. Guo, M. S. Feng, R. J. Guo, F. M. Pan, and C.
Y. Chang, 1995, Appl. Phys. Lett. 67, 2657.
[64].Dieter K. Schroder, 1998 Semiconductor material and
device characterization, Chapter 3.
[65]. S. Nakamura, M. Senoh, and T. Mukai, 1993, Appl.Phys.
Lett. 62, 2390.
[66]. H. Ishikawa, S. Kobayashi, Y. Koide, S. Yamasaki, S.
Nagai, J. Umezaki, M. Koike and M. Murakami, 1997,
Appl. Phys. Lett. 81, 1315.
[67]. K. V. Vassilevski, M. G. Rastegaeva, A. I. Babanin,
I. P. Nikitina, and V. A. Dmitriev, 1996, MRS
Internet J. Nitride Semicond. Res. 1, 38.
[68]. D. J. King, L. Zhang, J. C. Ramer, S. D. Hersee, and
L. F. Lester, 1997, Mater. Res. Soc. Symp. Proc. 468,
421.
[69]. I. Akasaki, H. Amano,S. Sota, H. Sakai, T. Tanaka,
and M. Koike, 1995, Jpn. Appl. Phys. Lett., Part 2,
34, L1517.
[70]. T. Mori, T. Kozawa, T. Ohwaki, Y. Taga, S. Ngai, S.
Yamasaki, S. Asami, N. Shibata, and M. Koike, 1996,
Appl.Phys. Lett. 69, 3537.
[71]. T. Kim, j. Kim, S. Chae, and T. Kim, 1997, Mater.
Res. Soc. Symp. Proc. 468, 427.
[72]. J. T. Trexler, S. J. Pearton, P. H. Holloway, H. G.
Mier, K. R. Evans, and R. F. Karlicek, 1997, Mater.
Res. Soc. Symp. Proc. 449, 1091.
[73]. T. Kim, M. C. Yoo, and T. Kim, 1997, Mater. Res. Soc.
Symp. Proc. 449, 1061.
[74] Amy. M. Roskowski, Edward A. Preble, 2002, IEEE
Journal of Quantum electronics Vol 38, No.8.
[75] Manijeh Razeghi, 2002, Proceeding of IEEE, Vol 90,No.6.
[76] I.-H. Lee, T. G. Kim, and Y. Park, 2002, J. Cryst.
Growth 234, 305.
[77] S. Kamiyama, M. Iwaya, N. Hayashi, T. Takeuchi, H.
Amano, I. Akasaki, S. Watanabe, Y. Kaneko, and N.
Yamada, 2001, J. Cryst. Growth 223, 83.
[78] H.Amano and I. Akasaki, 2002, Opt. Mater. 19, 219.
[79] J. Han, K. E. Waldrip, S. R. Lee, J. J. Figiel, S. J.
Hearne, G. A. Petersen, and S. M. Myers, 2001, Appl.
Phys. Lett.78, 67.
[80] C.R. Lee, S.J. Son, et.al., 2001, J.Cryst. Growth 226,
215.
[81] T. Kashima, R. Nakamura, et.al., 1999, Jpn. J.Appl.
Phys, Part 2 38, L1515.
[82] M. Iwaya, S. Terao, T. SANO, ET.AL, 2001, Phys. Status
Solid A 188, 117.
[83] X.Zhang, P.D. Dapkus, and D.H. Rich, et.al., 2000,
Appl. Phys. Lett. vol. 77, 153.
[84] D. Kapolnek, S. Keller R. Vetury, 1997, Appl. Phys.
Lett. vol.71, 134.
[85] A. SAKAI, H. Sunakawa, A. Kimura, et.al., 2000, Appl.
Phys. Lett. vol.76, 358.
[86] Peter P. Chow Jody j. Klaasen, 2000, Proceeding of
SPIE Vol. 3948.
[87] F.Omnes, N. Marenco, et.al., 1999, Jpn. J.Appl. Phys.
Vol 86, No9.
[88] K. Uchida, A. Watanabc, F. Yano, M. Kouguchi, T.
Tanaka and S. Minagawa, 1996, Appl. Phys. Lett. 79,
3487.
[89] D. Kum and D. Byun, 1997, J. Electron. Mater. 23 1098.
[90] H. Amano, N. Sawaki, I. Akasaki and Y. Toyoda,1986,
Appl. Phys. Lett. 48, 353.
[91] S. Nakamura, 1991, Jpn. Appl. Phys. Lett. 30, L1705.
[92] C. F. Lin, G. C. Chi, M. S. Feng, J. S. Tsang and J.
M. Hong, 1996, Appl. Phys. Lett. 68,3758.
[93] L. Sugiura, K. Itaya, J. Nishio, H. Fujimoto and Y.
Kokubo, 1997, Appl. Phys. Lett. 82,4877.
[94] J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting,
D. Lambert, J. D. Schaub, R. D. Dupuis and J. C.
Campbell, 1999, Electron. Lett. 34, 692.
[95] C. Q. Chen, J. P. Zhang, M. E. Gaevski, H. M. Wang, W.
H. Sun, R. S. Q. Fareed, J. W. Yang, and M. Asif Khan,
2002, Appl. Phys. Lett. 81, 4961.
[96] M. Fatemin, A. E. Wickenden, D. D. Koleske, M. E.
Twigg, J. A. Freitas, Jr.,R. L. Henry, and R. L.
Henry, and R. J. Goman, 1998, Appl. Phys. Lett. 73,
608.
[97] T. Someya, K. Hoshino, Y.Arakawa, 2001, Appl. Phys.
Lett. 79, 1992.
[98] P. A. Grudowski, A. L. Holmes, C. J. Eiting, and R. D.
Dupuis, 1996, Appl. Phys. Lett. 69, 3626.
[99] Takayuki YUASA, Yoshihiro UETA, Yuhzoh TSUDA, Atushi
OGAWA, Mototaka TANEYA and Katsutoshi TAKAO,1999, Jpn.
Appl. Phys. Lett. 38, L703.
[100] G. Parish, S. Keller, P. Kozodoy, J. P. Ibbetson, H.
Marchand, P. T. Fini, S. B. Fleischer, S. P.DenBaars,
U. K. Mishra, and E. J. Tarsa, 1999, Appl. Phys.
Lett. 75, 247.
[101] D. Kapolnek, S. Keller, R. Vetury, R. D. Underwood,
P. Kozodoy, S. P. DenBaars, and U. K. Mishra, 1997,
Appl. Phys. Lett. vol. 71, 1024.
[102] H. Marchand, J. P. Ibbetson, P. T. Fini, S. Chichibu,
S. J. Rosner, S. Keller, S. P. DenBarrs, J. S. Speck,
and U. K. Mishra, 1998, Proc. 25th Int. Symp.Compound
Semiconductors, Nara, Japan.
[103] I. H. Kim, C. Sone, O. H. Nam, Y. J. Park, and T.
Kim, 1999, Appl. Phys. Lett. vol.75, 4109.
[104] A. Sakai, H. Sunakawa, A. Kimura, and A. Usui, 2000,
Appl. Phys. Lett. vol.76, 442.
[105] X. Zhang, P. D. Dapkus, and D. H. Rich, 2000, Appl.
Phys. Lett. vol.77, 1496.
[106] E. Monroy, F. 2001, Calle Phys. Stat. Sol. vol.188,
No1.
[107] Mazeghi, P.Kung ET.AL., Materials and Device V.Guil
J. Brown, 2000, Proceedings of SPIE vol. 3948.
[108] P. A. Grudowski, A. L. Holmes, C. J. Eiting, and R.
D. Dupuis, 1996, Appl. Phys. Lett. 69, 3626.
[109] M. Fatemin, A. E. Wickenden, D. D. Koleske, M. E.
Twigg, J. A. Freitas, Jr.,R. L. Henry, and R. L.
Henry, and R. J. Goman, 1998, Appl. Phys. Lett. 73,
608.
[110] T. Someya, K. Hoshino, Y.Arakawa, 2001, Appl. Phys.
Lett. 79, 1992.
[111] A.Singh, et.al., 1993, Appl. Phys. Lett. 74, 6714.
[112] W. Liu. M. F. Li, S. J. Chua, Y. H. Zhang, and K.
Uchida, 1997, Appl. Phys. Lett. 71, 2511.
[113] B. W. Lim, Q. C. Chen, J. W. Yang, and M. Asif Khan,
1996, Appl. Phys. Lett. 68, 3761.
[114] D. Walker, X. Zhang, A. Saxler, P. Kung, J. Xu, and
M. Razeghi, 1997, Appl. Phys. Lett. 70, 949.
[115] A. Osinsky, S. Gangopadhay, B. W. Lim, M. Z. Anwar,
M. A. Khan, D. Kuksenkov, and H. Tempkin, 1998, Appl.
Phys. Lett.72, 742.
[116] M. Suzuki, J. Nishio, M. Onomura, and C. Hongo, 1998,
J. Cryst. Growth. vol. 189, 511.
[117] M. Katsuragawa, S. Sota, M. Komori, C. Anbe, T.
Takeuchi, H. Sakai, H. Amano, and I. Akasaki, 1998,
J. Cryst. Growth, 189, 528.
[118] E. J. Tarsa, P. Kozodoy, J. Ibbetson, and B. P.
Keller, G. Parish and U. Mishra, 1998, Appl. Phys.
Lett. 77, 316.
[119] G. Parish, S. Keller, P. Kozodoy, J. P. Ibbetson, H.
Marchand, P. T. Fini, S. B. Fleischer, S. P.DenBaars,
U. K. Mishra, and E. J. Tarsa, 1999, Appl. Phys.Lett.
75, 247.
[120] J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting,
D. Lambert, J. D. Schaub, R.D. Dupuis and J.C.
Campbell, 1999, Electron. Lett. 34, 692.
[121] C. Q. Chen, J. P. Zhang, M. E. Gaevski, H. M. Wang,
W. H. Sun, R. S. Q. Fareed, J. W. Yang, and M. Asif
Khan, 2002, Appl. Phys. Lett. 81, 4961.
[122] J. M. Van Hove, R. Hickman, J. et.al., 1997, Appl.
Phys. Lett 70, 17.
[123] F. Omnes, N. Marenco, et.al., 1999, Jpn. Appl. Phys.
Lett. vol 86, No 9.
[124] C. J. Collins, U. Chowdhury, M. M. Wong, B. Yang, A.
L. Beck, R. D. Dupuis, and J. C. Campbell, 2002,Appl.
Phys. Lett. 80, 3754.
[125] Akira HIRANO, Motoaki IWAYA, Theeradetch DETCHPROHM,
Hiroshi AMANO and Isamu AKASAKI, 2000, Appl. Phys.
Lett. 39, 387.
[126] T.Li, A.L.Beck, C. Collins, R. P. Dupuis, 1999, IEEE
55, 687.
[127] L.S. Yeh, M. L. Lee, 2003, Solid State Electronics
47, 255.
[128] M. Razeghi and A. Rogalski, 1996, J. Appl.Phys. 79,
7433.
[129] E. Monroy, F. Calle, J. L. Pau, E. Munoz, F. Omnes,
B. Beaumont, and P. Gibart, 2001, J.Cryst.Growth 230,
537.
[130] H. Morkoc, 1999, Naval Research Reviews 51 (1), 26.
[131] D.K. Wickenden, Z. Huang, D. Brent Mott, and P.K.
Shu, 1997, Johns Hopkins APL Technical Digest 18 (2),
217.
[132] W. Yang, T. Novova, S. Krishnankutty, R. Torreano, S.
McPherson, and H. Marsh, 1998, J. Appl.Phys. 73 (8),
1086.
[133] T. Huang, D.B. Mott, and A. La, 1999, Proc. SPIE
3765, 254.
[134] J.D. Brown, J. Matthews, S. Harney, J. Boney, J.F.
Schetzina, J.D. Benson, K.V. Dang, T. Nohava, W.
Yang, and S. Krishnankutty, 1999, MRS Internet J.
Nitride Semicond. Res. 4, 9.
[135] J.D. Brown, J. Matthews, S. Harney, J.C. Boney, J.F.
Schetzina, J.D. Benson, K.V. Dang, T. Nohava, W.
Yang, and S. Krishnankutty, 2000, MRS Internet J.
Nitride Semicond. Res. 5S1, W1, 9.
[136] J.D. Brown, J. Boney, J. Matthews, P. Srinivasan,
J.F. Schetzina, T. Nohava, W. Yang,and S.
Krishnankutty, 2000, MRS Internet J. Nitride
Semicond. Res. 5, 6.
[137] D. Walker, V. Jumar, K. Mi, P. Kung, X.H. Zhang, and
M. Razeghi, 2000, Appl.Phys. Lett. 76, 403.
[138] E.L. Tarsa, P. Kozodoy, J. Ibbetson, and B.P. Keller,
2000, Appl. Phys. Lett. 77, 316.
[139] http://www.nasatech.com/Briefs/Oct99/GSC13828.html by
Zhenchun Huang, David Brent Mott, and Peter K.Shu.
[140] Wei Yang, Thomas Nohova, Subash Krishnankutty, Robert
Torreano, Scott McPherson, and Holly Marsh, 1998,
Appl. Phys. Lett., 73, 1086.
[141] E. J. Tarsa, P. Kozodoy, J. Ibbetson, B. P. Keller,
G. Parish, and U. Mishra, 2000, Appl. Phys. Lett.,
77, 316.
[142] D. J. H. Lambert, M. M. Wong, U. Chowdhury, C.
Collins, T. Li, H. K. Kwon, B. S. Shelton, T. G. Zhu,
J. C. Campbell, and R. D. Dupuis, 2000, Appl. Phys.
Lett.,77, 1900.
[143] D. Walker, V. Kumar, K. Mi, P. Sandvik, P. Kung, X.
H. Zhang, and M. Razeghi, 2000, Appl. Phys. Lett.,
76, 403.
[144] T. Huang, D. B. Mott, A. La, 1999, Proc. SPIE, 3746,
254.
[145] J.D. Brown, J. Boney, J. Matthews, P. Srinivasan,
J.F. Schetzina, Thomas Nohava, Wei Yang, Subash
Krishnankutty, 2000, MRS Internet J. Nitride
Semicond. Res.,5, 6.
[146] P. Lamarrre, A Hairston, S Tobin, K. K. Wong, M. F.
Taylor, A. K. Sood, M. B. Reine, M. J. Schurman,
I.T. Ferguson, R. Singh, and C. R. Eddy, Jr., 2001,
Material Research Society Symp. Proc., 639, G10.9.1.
指導教授 李佩雯(Pei-Wen Li) 審核日期 2007-6-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明