博碩士論文 91521003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:83 、訪客IP:18.189.143.164
姓名 陳政平(Jenq-Pyng Chen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用於無線區域網路5.8GHz 射頻接收電路之研製
(Implementation of 5.8 GHz RF Receiver Circuits for WLAN Applications)
相關論文
★ 應用於筆記型電腦數位電視單極天線之研製★ 應用於數位機上盒與纜線數據機之電纜多媒體傳輸標準多工濾波器
★ 印刷共面波導饋入式多頻帶與超寬頻天線設計★ 微波存取全球互通頻段前向匯入式功率放大器與高效率Class F類功率放大器暨壓控振盪器電路之研製
★ 應用於矽基功率放大器與混頻器之傳輸線型變壓器研究★ 應用於V-頻段射頻收發機前端電路之低功耗源極注入式混頻器之研製
★ 應用積體電路上方後製程與整合被動元件於互補式金氧半導體製程之系統封裝研究★ 應用fT-倍頻電路架構於毫米波壓控振盪器與注入鎖定除頻器之研製
★ 應用傳輸線型變壓器於X/K–Ka/V頻段全積體整合之寬頻互補式金氧半導體功率放大器研製★ 應用於K / V 頻段低功耗混頻器之研製
★ 應用於K/V頻段之低功耗CMOS低雜訊放大器之研究★ 應用於5-GHz CMOS射頻前端電路之低電壓自偏壓式混頻器與高線性化功率放大器之研製
★ 應用於 K 頻段射頻接收機之寬頻低功耗 CMOS 低雜訊放大器之研製★ 應用磁耦合變壓器於K頻段之低功耗互補式金氧半導體壓控振盪器研製
★ 應用於K頻段之單向化全積體整合功率放大器與應用於V頻段之寬頻功率放大器研製★ 應用於C/X頻段全積體整合之互補式金氧半導體寬頻低功耗降頻器與寬頻功率混頻器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要
本論文主題在於使用標準金屬氧化半導體製程(tsmc 0.18μm 1P6M CMOS)來研製應用於 802.11a WLAN 之5GHz U-NII 頻帶5.725~5.825GHz 接收電路CMOS RFIC。實現在5.8GHz的低雜訊放大器、收發切換開關電路、鏡像抑制混頻器、直接降頻混頻器。
第一部份為5.8GHz CMOS 使用主動偏壓電路的低雜訊放大器,量測結果如下:增益約14dB、雜訊指數為4.3 dB、IIP3/OIP3 截斷點約為5dBm / 20dBm、P1dB 增益壓縮點為-11dBm。第二部份為5.8 GHz CMOS 收發切換開關電路,分別為指叉數(number of finger)為16 個與指叉數為128 個,指叉數為16 個的量測結果如下:插入損耗為2.39 dB、隔離度為35.75dB、P1dB增益壓縮點為18 dBm,另一個指叉數為128 個的量測結果如下:插入損耗為1.75 dB、隔離度為27.4dB、P1dB 增益壓縮點為17 dBm。第三部份為5.8GHz CMOS 鏡像抑制混頻器,量測結
果如下:轉換損耗為-4 dB、P1dB 增益壓縮點為-14 dBm、雜訊指數為23dB、隔離度均為40dB以上、IIP3/ OIP3截斷點約為 0dBm / -5.1dBm、鏡像抑制為18dB 左右。第四部份5.8 GHz CMOS降頻諧波混頻器,可分為兩種架構,第一種架構為轉換損耗為-2 dB、P1dB 增益壓縮點為-6dBm、隔離度均為30dB 以上、IIP3/OIP3 截斷點約為-2.5dBm / -4dBm;第二種架構為轉換
損耗為-5.2 dB、P1dB 增益壓縮點為-6dBm、隔離度均為30dB 以上、IIP3/OIP3 截斷點約為3dBm/-5dBm
在tsmc 0.18μm 1P6M CMOS 製程的RF model 已趨於準確以及穩定下,只要加以小心的設計及佈局,均可以得到不錯的5.8GHz 的電路特性。以及再加入精準的偏壓電路,則可成功將5.8GHz CMOS 晶片做更進一步的整合。
摘要(英) Abstract
The work use tsmc 0.18µm 1P6M CMOS technology to develop 5GHz U-NII band 5.725GHz~5.825GHz CMOS RFICs for the 802.11a WLAN receiver.
The designed 5GHz RFICs include the low noise amplifier, T/R switch, image rejection mixer, sub-harmonic mixer.The first part of the thesis is the design of 5.8GHz low noise amplifier. The performances are obtained as the gain of 10.5 dB, noise figure of 4.13 dB, input and output third order intercept point of 6dBm /14.5dBm, input 1 dB compression point of –9dBm. The second part of the thesis is a 5.8GHz T/R switch. The following performances were measured as the insertion loss of 2.33dB, isolation of 35.75dB, input 1 dB compression point of 18dBm in 16-finger device. The performances are shown as insertion loss of 1.75dB, isolation of27.4dB, input 1 dB compression point of 17dBm in 128-finger design. The third part of the thesis is of 5.8GHz image rejection mixer. The measured results are the conversion loss of 4.2 dB, input 1 dB compression point of -14dBm, noise figure of 23dB, isolation is greater than 30 dB, input and output third intercept point of 0dBm /-5.1dBm, and image reject ratio is 19dB. The fourth part of the thesis is a 5.8GHz subharmonic Mixer. The measurement results are achieved as follow. The conversion loss is 1.15dB, input power at the 1dB gain compression point is -6dBm, signal isolation is greater than
30dB, and input third intercept point is -2.5 dBm/-4dBm. The other Gilbert cell mixer was
designed for comparison. It obtains the conversion loss of 5.15dB, input power at the 1dB gain compression point is -6dBm, signal isolation is greater than 30dB, and input third intercept point is 3dBm/0.5dBm.
Since the accuracy of tsmc 0.18 µm CMOS RF model, the designed RFICs show very good
agreements between the simulations and measurements under careful design and layout procedures.
The basic cell circuits for 5 GHz band receiver including LNA, switch, and mixer are successfully
developed in this thesis. The future work will integrate these circuits to be a high level receiver.
關鍵字(中) ★ 射頻
★ 低雜訊放大器
★ 混頻器
★ 二次諧波
★ 收發開關電路
★ 鏡像抑制混頻器
關鍵字(英) ★ Image Rejection Mixer
★ TR Switch
★ sub_harmonic
★ MIXER
★ LNA
★ CMOS
★ RF
論文目次 目錄
第一章緒論
§1-1 簡介‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧01
§1-2 接收機架構簡介‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧04
§1-3 各章節提要‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧05
第二章 5.8GHz使用主動偏壓電路的低雜訊放大器
§2-1 tsmc 0.18μm 1P6M CMOS 製程元件簡介‧‧‧‧‧‧‧‧‧‧06
§2-1-1 元件模型與電路設計的關係‧‧‧‧‧‧‧‧‧‧‧‧‧‧06
§2-1-2 NMOS電晶體元件簡介‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧06
§2-1-3 MIM 電容元件簡介‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧07
§2-1-4 螺旋式電感元件簡介‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧08
§2-1-5 鎊線及PAD 元件簡介‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧09
§2-1-6 電阻元件簡介‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧10
§2-2 5.8GHz低雜訊放大器原理‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧11
§2-2-1 簡介‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧11
§2-2-2 重要參數‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧12
§2-2-3 電路架構‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧12
§2-2-4 工作原理‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧15
§2-2-5 雜訊模型推導‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧16
§2-3 5.8GHz 低雜訊放大器設計與製作‧‧‧‧‧‧‧‧‧‧‧‧‧19
§2-4 5.8GHz 低雜訊放大器模擬與量測結果比較‧‧‧‧‧‧‧‧‧21
§2-5 5.8GHz 低雜訊放大器結果討論‧‧‧‧‧‧‧‧‧‧‧‧‧‧26
第三章 5.8 GHz收發切換開關
§3-1 5.8 GHz收發切換開關原理‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧27
§3-1-1 簡介‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧27
§3-1-2 重要參數‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧27
§3-1-3 電路架構‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧27
§3-1-4 工作原理‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧29
§3-2 5.8GHz收發切換開關設計與製作‧‧‧‧‧‧‧‧‧‧‧‧‧‧31
§3-3 5.8GHz收發切換開關模擬與量測結果比較‧‧‧‧‧‧‧‧‧‧35
§3-4 5.8GHz收發切換開關設計與製作‧‧‧‧‧‧‧‧‧‧‧‧‧‧38
§3-5 5.8GHz收發切換開關模擬與量測結果比較‧‧‧‧‧‧‧‧‧‧42
§3-6 5.8GHz收發切換開關結果討論‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧45
第四章 5.8GHz鏡像抑制混頻器
§4-1 5.8 GHz鏡像抑制混頻器原理‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧46
§4-1-1 簡介‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧46
§4-1-2 重要參數‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧46
§4-1-3 電路架構‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧47
§4-1-4 工作原理‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧49
§4-2 5.8 GHz鏡像抑制混頻器設計與製作‧‧‧‧‧‧‧‧‧‧‧‧57
§4-3 5.8 GHz鏡像抑制混頻器模擬與量測結果比較‧‧‧‧‧‧‧‧63
§4-4 5.8 GHz鏡像抑制混頻器結果討論‧‧‧‧‧‧‧‧‧‧‧‧‧72
第五章 5.8 GHz 降頻諧波混頻器
§5-1 5.8 GHz 降頻諧波混頻器原理‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧73
§5-1-1 簡介‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧73
§5-1-2 電路架構‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧75
§5-2 5.8 GHz降頻諧波混頻器‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧76
§5-2-1 設計與製作‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧76
§5-2-2 模擬與量測結果比較‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧82
§5-3 5.8 GHz降頻諧波混頻器‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧90
§5-3-1 設計與製作‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧90
§5-3-2 模擬與量測結果比較‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧96
§5-4 5.8 GHz降頻諧波混頻器結果討論‧‧‧‧‧‧‧‧‧‧‧‧‧‧104
第六章 結論與未來工作‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧105
參考文獻‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧107
參考文獻 [1] IEEE Std 802.11a/D7.0-1999, Part11: Wireless LAN Medium Access Control (MAC) and Physical Layer(PHY) specifications: High Speed Physical Layer in the 5GHz Band.
[2]李亮輝,802.11a WLAN 接收機射頻系統規劃與5GHz CMOS差動LAN/Mixer 之設計,國立成功大學電機工程硏究所碩士論文,民國九十一年。
[3] TSMC, TSMC 0.18um mixed signal 1P6M+ salicide 1.8/3.3V RF spice models, 2001.
[4] CIC教育訓練課程,RF CMOS Design Flow,民國九十二年。
[5] Behzad Razavi, RF Microelectronics, Prentice-Hall, Inc., 1998.
[6] D. K. Shaeffer and T. H. Lee, “A 1.5-V 1.5-GHz CMOS Low Noise Amplifier,” IEEE J. Solid-State Circuits, vol. 32, no. 5, pp. 745-759, May
[7] CIC教育訓練課程,Design of RF CMOS IC,民國九十二年。
[8] Sedra, A. S., and K. C. Smith. “MICROELECTRONIC CIRCUITS”4th ed. Philadelphia: Saunders College Publishing, 1997.
[9] D. K. Shaeffer and T. H. Lee, “ A 1.5-V 1.5-GHz CMOS Low Noise Amplifier,”IEEE J. of Solid-State Circuits, vol.32, No. 5, pp. 745-759, May 1997.
[10] T. H. Lee, The Design of CMOS Radio-frequency Integrated Circuits, Cambridge University Press, 1998.
[11] F. J. Huang, and O, “A 0.5-µm CMOS T/R Switch for 900-MHz Wireless Applications,” IEEE J. of Solid-State Circuits, Vol. 36, No. 3, pp. 486-492, March 2001.
[12] K. Yamamoto, et. al., “A 2.4-GHz-Band 1.8-V Operation Single-Chip i-CMOS T/R-MMIC Front-End with a Low Insertion Loss Switch,” IEEE J. of Solid-State Circuits, Vol. 36, No. 8, pp. 1186-1197, August 2001.
[13]顏呈機,2.4GHz ISM頻帶收發機射頻前端CMOS RFIC及使用二極體線性器CMOS PA之研製,國立成功大學電機研究所碩士論文,民國九十一年。
[14] Hove & Janus Lysholm Faaborg, Michael Bohl Jenner, Saska Lindfors “0.35µm CMOS T/R Switch for 2.4GHz Short Range Wireless Applications “RF Integrated Systems & Circuits (RISC) group, Aalborg University Niels Jernes Vej 12, 9220 Aalborg East.
[15] Feng-Jung Huang and Kenneth O “A 2.4-GHz Single-Pole Double-Throw T/R Switch with 0.8-dB Insertion LossImplemented in a CMOS Process” Department of Electrical and Computer Engineering, Silicon Microwave Integrated Circuits and Systems Research Group (SiMICS) University of Florida,
[16] R. Hartley, “Modulation System,” US Patent 1,666,206, April 1928.
[17] Behzad Razavi, “RF Microelectronics: Chapter 5, Transceiver Architectures,” Prentice Hall Communication Engineering and Emerging Technology Series, 1998.
[18] P. J. Sullivan, B. A. Xavier, and W. H. Ku “Low Voltage Performance of a Microwave CMOS Gilbert Cell Mixer” IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 32, NO. 7, JULY 1997
[19] Glenn Watanabe, Henry Lau and Juergen Schoepf “Integrated Mixer Design” Motorola Inc., Semiconductor Products Sector, WSSG RF/IF Division 2100 E. Elliot Rd., MD EL381, Tempe, Arizona USA 85284
[20] Toby Kwok-Kei Kan, Kin-Chung Mak, Dongsheng Ma and Howard C. Luong “A 2-V 900-MHz CMOS Mixer for GSM Receivers” Department of Electrical & Electronic Engineering Hong Kong University Science and Technology
[21] John G. Maneatis, “Low-Jitter Process-Independent DLL and PLL Based onSelf-Biased Techniques” IEEE J. Solid-State Circuits, vol. 31, no. 11, pp.1723-1732, Nov 1996.
[22] Kiran Nimmagadda and Gabriel M. Rebeiz “A 1.9GHz Double-Balanced Subharmonic Mixer for Direct Conversion Receivers.” 2001 IEEE Radio Frequency Integrated Circuit Symposium.
[23] Sher Jiun Fang, See Taur Lee ,and David j. Allstor “A 2GHz CMOS Even Harmonic Mixer for Direct Conversion Receivers.” 2001 IEEE
[24] Liwei Sheng, Jonathan C. Jensen, Student Member, IEEE, and Lawrence E. Larson, Fellow, IEEE “A Wide-Bandwidth Si/SiGe HBT Direct Conversion Sub-Harmonic Mixer Downconverter” IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 35, NO. 9, SEPTEMBER 2000
指導教授 邱煥凱(Hwann-Kaeo Chiou) 審核日期 2004-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明