參考文獻 |
參考文獻資料
[1] G. W. Taylor, “Subthreshold conduction in MOSFET’s,” IEEE Trans. Electron Devices, vol. ED-25, pp. 337, 1978.
[2] R. R. Troutman, “VLSI limitations from drain-induced barrier lowering,” IEEE J. Solid-State Circuits, vol. SC-14, pp. 383, 1979.
[3] 林鴻志,“奈米金氧半電晶體元件技術發展趨勢(I)”,毫微米通訊,七卷一期,pp. 1-12,2001。
[4] J. H. Stathis, “Reliability projection for ultra-thin oxides at low voltage,” IEDM Tech. Digest, pp. 167, 1998.
[5] YAN. R. H., OURMAZD, A., and LEE, K. F., ”From bulk to SOI to bulk,” IEEE Trans. ED-39, pp. 1704-1710, 1992.
[6] J. Y. Tsai et al, “DIBL considerations of extended drain structure for 0.1 μm MOSFET's,” IEEE Electron Device Lett., EDL-17, pp. 331, 1996.
[7] Y. Taur et al., “25 nm CMOS design considerations,” IEDM Tech. Digest, pp. 789, 1998.
[8] P. W. Li, Y. F. Yang, E. S. Yang, J. Chu, and B. S. Meyerson, “SiGe pMOSFETs with gate oxide fabrication by microwave electron cyclotron resonance plasma,” IEEE Electron Device Lett., vol. 45, pp. 402, 1994.
[9] Y. C. Yeo et al., “Enhanced Performance in Sub-100nm CMOSFETs using Strained Epitaxial Silicon-Germanium,” IEDM, pp. 753, 2000.
[10] 石靖節,“應變型矽鍺通道金氧半電晶體之研究”,碩士論文,國立中央大學,民國92年。
[11] V. E. Houtsma et al., “Stress-induced leakage current in p+ poly MOS capacitors with poly-Si and poly-Si0.7Ge0.3 gate material,” IEEE Electron Device Lett., EDL-20, pp. 314, 1999.
[12] Y. V. Ponomarev et al., “Gate-workfunction engineering using poly-(Si,Ge) for high-performance 0.18 μm CMOS technology,” IEDM Tech. Digest, pp. 829, 1997.
[13] T. –J. King et al., “A polycrystalline-Si1-xGex-gate CMOS technology,” Proc. IEDM, pp.253, 1990.
[14] T. –J. King et al., “ Electrical properties of heavily doped polycrystalline silicon-germanium films,” IEEE Tran. Electron Devices, ED-41, pp. 228, 1994.
[15] R. People and J. C. Bean, “Band alignments of coherently strained GexSi1-x/Si heterostructures on <001> GeySi1-y substrates,” Appl. Phys. Lett., vol. 48, pp. 538, 1986.
[16] G. W. Taylor, “Subthreshold conduction in MOSFET’s,” IEEE Trans. Electron Devices, vol. ED-25, pp. 337, 1978.
[17] R. R. Troutman, “VLSI limitations from drain-induced barrier lowering,” IEEE J. Solid-State Circuits, vol. SC-14, pp. 383, 1979.
[18] R. People, “Indirect band gap of coherently strained GexSi1-x bulk alloys on <001> silicon substrates,” Phys. Rev., vol. B32, pp. 1405, 1985.
[19] T. J. King et al., “A low-temperature (⩽ 500°C) silicon-germanium MOS thin-film transistor technology for large-area electronics,” Proc. IEDM, pp. 567, 1991.
[20] “Electrical measurement of the bandgap of N+ and P+ SiGe formed by Ge ion implantation,” in Mater. Res. Symp. Proc., vol. 500, pp.69, 1994.
[21] A. Nishiyama, O. Arisumi, and M. Yoshimi, “Suppression of the floating-body effect in partially-depleted SOI MOSFET’s with SiGe source structure and its mechanism,” IEEE Trans. Electron Devices, vol. 44, pp. 2187, 1997.
[22] M. C. Öztürk, J. Liu, H. Mo, and N. Pesovic, “Advanced Si1-xGex Source/Drain and Contact Technologies for sub-70 nm CMOS,” IEDM, pp. 375, 2002.
[23] P. Ranade, H. Takeuchi, V. Subramanian, and T. J. King, “A Novel Elevated Source/Drain PMOSFET Formed by Ge-B/Si Intermixing,” IEEE Electron Device Lett., vol. 23, pp. 218, 2002.
[24] H. Takeuchi, W. C. Lee, P. Ranade, and T. J. King, “Improved PMOSFET Short-Channel Performance Using Ultra-Shallow Si0.8Ge0.2 Source/Drain Extensions,” IEDM, pp. 501, 1999.
[25] T. Uchino et al., “A raised source/drain technology using in-situ P-doped SiGe and B-doped Si for 0.1-μm CMOS ULSIs,” IEDM Tech. Digest, pp.479, 1997.
[26] H. J. Huang, K. M. Chen, C. Y. Chang, L. P. Chen, G. W. Huang, and T. Y. Huang, “Reduction of source/Drain Series Resistance and Its Impact on Device Performance for PMOS Transistors with Raised Si1-xGex Source/Drain,” IEEE Electron Device Lett., vol. 21, pp. 448, 2000.
[27] A. Nishiyama, K. Matsuzawa, and S. I. Takagi, “SiGe Source/Drain Structure for the Suppression of the Short-Channel Effect of Sub-0.1-mm p-Channel MOSFETs,” IEEE Trans. Electron Device, vol. 48, pp. 1114, 2001.
[28] 廖偉明,“高效能矽鍺互補型金氧半電晶體之研製”,碩士論文,國立中央大學,民國91年。
[29] D. –X. Xu, “n-Si/p-Si1-xGex/n-Si double-heterojunction bipolar transistor,” Appl. Phys. Lett., vol. 52, pp. 2239, 1988.
[30] J. W. Coburn, and E. Kay, “Some Chemical Aspects of Fluorocarbon Plasma Etching of Silicon and Its Compounds,” Solid State Technol., pp. 117, 1979.
[31] J. W. Coburn, “Surface-science Aspects of Plasma-assisted Etching,” Appl. Phys. A, vol. A59, pp. 451, 1994.
[32] M. M. Millard, and E. Kay, “Difluocarbene Emission Spectra from Fluorocarbon Plasmas and Its Relationship to Fluorocarbon Polymer Formation,” J. Electrochem. Soc., pp. 160, 1982.
[33] 佳霖科技於本校STS ICP ETCHER與smart-EPDTM教育訓練課程中提供的資料。
[34] http://smithsonianchips.si.edu/ice/cd/MEM96/SEC13.pdf
[35] T. –J. King, and K. C. Saraswat, “Deposition and Properties of Low-Pressure Chemical-Vapor Deposited Polycrystalline Silicon-Germanium Films,” J. Electrochem. Soc., vol.141, pp. 2235, 1994. |