博碩士論文 91342010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:18.118.126.44
姓名 李明禹(Ming-yu Lee)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 利用花崗岩及玻璃回收料製造功能性人造石材之研究
(Mixing Design & Resource Study of Functional Composite Stone Materials)
相關論文
★ 公共工程統包模式執行專案成員間問題 之研究★ 水泥製程於資源再利用之研究
★ 防水毯的生管與品管之探討★ 建置生命紀念園區營運階段管理模式之研究 以新北市某民間公共紀念園區為例
★ 軍用機場跑道鋪面維護管理暨搶修作業機制之研究★ TAF 檢驗機構認證申請之研究- 以混凝土後置式化學錨栓檢驗為例
★ 利用UML建構實驗室資訊管理平台-以合約審查為例★ 營建施工管理導入即時性資訊傳遞工具功能需求之研究
★ 鋪面養護決策支援分析模式之研究★ 營建材料實驗室量測系統評估及誤差分析
★ 以績效為基礎的公路養護組織與機制之研究★ 智慧型鋪面檢測車平坦度量測驗證與應用
★ 公路設施養護管理程序建立及成本分析之研究-以IDEF方法建立鋪面養護作業程序★ 自動化鋪面平整度量測分析與破壞影像偵測系統之研究
★ 鋪面缺陷影像辨識系統應用於路網檢測之研究★ 道路檢測車複合檢測模組整合開發之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究利用花崗岩及玻璃回收料製造功能性複合石材,係利用花崗岩石材加工所剩餘的邊料板等下腳料資源化,經過粉碎加工、篩選洗淨,添加高硬度的回收玻璃石英砂、色料及功能性摻料,混合樹脂黏著劑,設計成合理的緻密配比,在真空、震動條件下壓結成型,製備功能性複合石材。因微細顆粒充填於黏著劑中而形成極緻密結構,進而增強抗壓強度及抗彎曲性能,使功能性複合石材具有高強度及低吸水率等優點,符合未來功能性石材的趨勢與節約資源永續發展的理念。
本論文利用在抽真空的低壓條件下,以震動加壓的方法探討石材下腳料與廢玻璃資源化製成人造石材,以40 % 的石英細粉混合60 % 的容器玻璃粉碎粒料資源化,在操作條件真空度50 mmHg,1400 Hz的震動頻率與1.5 kg/cm²的壓力震動壓實下,壓實持續2 min作成夜光功能性人造石材進行可行性研究。
研究顯示,回收料可以壓製成高抗壓強度與極低吸水率的人造鋪面石材,可以得到良好的緻密度。其比重為2.445,莫氐硬度> 6。較天然花崗岩的物理特性更為優良。(1)在細骨材緻密配比及最小含膠量設計條件下,添加細料進行充填,可提高抗壓強度達1500 kg/cm²以上,抗彎曲強度500 kg/cm²以上。(2)功能性複合石材微結構更為緻密,石材表面經抛光加工處理後光澤度提高,吸水率 < 0.02 %,優於天然大理石。(3)經過偏光顯微鏡、XRD與SEM微觀分析,功能性複合石材表面具有銳錐型TiO2結晶,具有光觸媒自清潔功能性。(4)添加15 %蓄光摻料之發光亮度為0.3 mcd/cm²可長達8小時以上,適合做為夜間標示與緊急逃生避難指引之營建材料。 (5)經濟效益評估設廠投資約需6.4仟萬,每年可資源化材料24萬噸。整體研究成果顯示可以利用回收料發展成為一種實用的功能性複合石材。
摘要(英) Stone materials for their inherited advantages and performances including fire proof, wear withstanding, bright and elegance have been comprehensively applied in constructional works. Though ultra large size of stone plates in thickness of 3 cm are now used for the curtain walls of buildings and stone materials for the flooring, stone sculptures and decoration purposes have been rapidly developed, many difficulties are challenging the engineering technology and maintenance. Therefore, basic requirements of being lighter, thinner, higher strength, and larger plate of stone materials have become the bottleneck for the future constructional materials to break through.
Functional composite stone materials, as the subject of the study, utilize the recycling of residual stone materials after the cutting process are to be further crashed, screened, cleaned, added with quartz of higher hardness, coloring and modified with additives in a refined batching; then mixed with epoxy resin to be compressed and molded under vacuum and vibration conditions. Wherein, nanometer powder modifier can be filled in the resin to form an extremely refine structure thus to improve bending strength and impact resistance for the functional composite stone materials to give advantages of being resilient, lightweight and yielding high tensile strength to meet the trends and sustainable development of ultra think stone sheets.
Modifier added into the functional composite stone materials is comprised of light storage, nanometer photothermal catalyst and special ceramic additives. Finally, the stone material is given surface treatment to provide features of stopping ingression of water containment, increasing brightness and hardness, becoming luminous in darkness, generating ions, bacteria resisting by photo-catalyst and self-cleaning, so to eliminate defectives including whitening, rust stains and water seepage found with the current natural stone materials.
Study results show that (1) given with the design conditions of refined batching and the least glue containment, addition of resin modifier and filler of nanometer fine materials will improve compression resistance over 1500 kg/cm², and bending strength over 500 kg/cm². (2) Addition of nanometer fine materials gives even more refined structure for the functional composite stone materials. The surface gloss of the stone materials after polishing could reach over 80, Mohr’s hardness over 8, and water absorption rate greater than 0.02%, all better than those found with the natural marble. (3) XRD and SEM, and AFM microscopic analysis indicate that TiO2 crystals in conic form are found on the surface of the functional composite stone materials that provides self-cleaning function of photo-catalyst. (4) Addition of 15% light storage material permits the duration of 0.3 mcd/cm² effective brightness up to 12 hours, making it an ideal candidate material for the making of marker during night hours and indicator of emergency evacuation. (5) The ratio by weight of the recycled waste of stone materials derived from the process could reach 43% in the functional composite stone materials, that is the extreme of the refined batching of 3/4” coarse aggregate. However, the engineering quality of granite is slightly compromised since the homogeneity of the crystal of granite is worse than that of the silicon sand. Nonetheless, overall study results have shown that the recycled stone materials are justified as feasible functional composite stone materials.
關鍵字(中) ★ 光觸媒
★ 營建材料
★ 人造石材
★ 玻璃回收料
★ 花崗岩
關鍵字(英) ★ recycled waste of stone materials
★ functional composite stone materials
論文目次 第一章 緒論 ...................................................................................................... 1
1.1 前言 .............................................................................................................. 1
1.2 研究動機 ...................................................................................................... 2
1.3 研究目的 ...................................................................................................... 3
1.4 研究範圍....................................................................................................... 4
1.5 研究方法....................................................................................................... 6
1.6 研究流程與架構 .......................................................................................... 8
第二章 文獻回顧 ............................................................................................ 11
2.1 石材回收再利用材料 ................................................................................ 11
2.2 玻璃的再利用 ............................................................................................ 19
2.3 蓄光摻料在人造石材之應用 .................................................................... 23
2.4 奈米光觸媒 ................................................................................................ 25
2.5 多孔性陶瓷與光觸媒 ................................................................................ 36
2.6 合理配比..................................................................................................... 38
第三章 實驗設計與研究方法 ........................................................................ 47
3.1 黏著劑對人造石材硬化性質實驗 ............................................................ 47
3.1.1 實驗流程及方法 .................................................................................. 47
3.1.2 實驗材料 .............................................................................................. 49
3.1.3 儀器設備及方法 .................................................................................. 50
3.2 蓄光摻料對人造石材發光性實驗 ............................................................ 53
3.2.1 實驗材料 .............................................................................................. 53
3.2.2 樣品備製 .............................................................................................. 54
3.2.3 夜光輝度評估 ..................................................................................... 54
3.2.4 餘輝亮度持久性測試 ......................................................................... 57
3.2.5 發光輝度評估的方法 .......................................................................... 60
3.3 奈米光觸媒摻料對功能性石材的研究 .................................................... 63
3.3.1 實驗流程 .............................................................................................. 63
3.3.2 實驗材料 .............................................................................................. 65
3.3.3 儀器設備及方法 .................................................................................. 66
3.4 真空震動壓實對石材緻密性的實驗 ........................................................ 70
3.4.1 實驗試體製備 ...................................................................................... 70
3.4.2 真空震動壓實對緻密性影響的實驗材料 ......................................... 72
3.4.3 真空震動壓實對功能性石材緻密性的儀器設備及方法 .................. 73
3.4.3.1 實驗設備 ........................................................................................... 73
3.4.3.2 營建石材的性能與測試標準 ........................................................... 75
3.5 配比設計與分析實驗 ................................................................................ 78
3.5.1 實驗流程 .............................................................................................. 78
3.5.2 實驗材料 .............................................................................................. 78
3.5.3 緻密配比實驗儀器設備及方法 .......................................................... 79
3.5.3.1 微觀顯微鏡 ....................................................................................... 79
3.5.3.2 光澤度的試驗方法及步驟 .............................................................. 80
3.5.4 配比的研究 ......................................................................................... 82
第四章 結果與討論 ........................................................................................ 89
4.1 黏著劑對人造石材硬化性質的影響 ........................................................ 89
4.1.1 硬化特性 .............................................................................................. 89
4.1.2 硬化試體的抗壓強度和彎曲強度 ...................................................... 91
4.1.3 先期配比試驗 ...................................................................................... 95
4.2 蓄光摻料對人造石材發光性結果與討論 .............................................. 101
4.2.1 餘輝檢定分析 .................................................................................... 101
4.2.2 九宮格取樣分析 ................................................................................ 103
4.2.3 蓄光摻料含量對亮度的影響 ............................................................ 105
4.2.4 玻璃粒度對亮度的影響 ................................................................... 109
4.2.5 蓄光摻料粒度與餘輝亮度時間 ........................................................ 112
4.2.6 激光時間對亮度的影響 .................................................................... 113
4.2.7 激光照度對亮度的影響 .................................................................... 113
4.3 奈米光觸媒摻料對功能性石材的影響 .................................................. 117
4.3.1 光觸媒摻料自潔去污的影響 ............................................................ 119
4.3.2 奈米光觸媒摻料疏水性的影響 ........................................................ 124
4.4 真空震動壓實對功能性石材緻密性的影響 .......................................... 126
4.5 合理配比設計的影響 .............................................................................. 132
4.5.1 顆粒堆積對抗壓強度的影響 ........................................................... 132
4.5.2 壓實壓力對強度的影響 .................................................................... 137
4.5.3 震動頻率的影響 ................................................................................ 139
4.5.4 吸水率試驗 ....................................................................................... 143
4.6 功能性複合石材配比設計驗証與分析 .................................................. 147
4.6.1 抗壓強度之望大特性 ....................................................................... 147
4.6.2 抗彎強度之望大特性 ....................................................................... 154
4.6.3 吸水率之望小特性 ........................................................................... 158
4.6.4 光澤度試驗 ....................................................................................... 164
4.6.5 耐久性實驗 ....................................................................................... 165
4.6.6 抑菌試驗檢定與成效 ....................................................................... 167
第五章 效益分析 .......................................................................................... 173
5.1 人造石材製造生產財務效益評估 .......................................................... 173
5.1.1 收入預估 ........................................................................................... 175
5.1.2 支出預估 ............................................................................................ 175
5.2 單層與複層設計之生產成本比較 .......................................................... 177
第六章 總結與建議 ...................................................................................... 182
6.1 結論 ........................................................................................................... 182
6.2 建議 ........................................................................................................... 185
參考文獻 ........................................................................................................... 186
附錄 ................................................................................................................... 197
參考文獻 1. A. B. D. Cassie, S. Baxter, Tarns. Faraday Soc. 40, p.546 (1944). http://en.wikipedia.org/wiki/Cassie's_law
2. Ahn B. Y., Pramanik N. C., Kim H., Hong S. I., “Redispersible rutile TiO2 nanocrystals in organic media by surface chemical modification with an inorganic barium hydroxide”, Journal of Colloid and Interface Science Volume: 297, Issue: 1, p. 138-142 (2006)
3. Airey G. D., Collop A. C., Thom N. H., “Mechanical performance of asphalt mixtures incorporating slag and glass secondary aggregates”, In: Proceedings of the Eighth Conference on Asphalt Pavements for Southern Africa, South Africa: Sun City (2004).
4. Alberici R. M., Canela M. C., Eberlin M. N., Jardim W. F., “Catalyst deactivation in the gas phase destruction of nitrogen-containing organic compounds using TiO2/UV–VIS” Applied Catalysis B: Environmental Volume: 30, Issue: 3-4, p. 389-397 (2001).
5. Bernd W. and Carl F.S., “Utilization of sewage age sludge ashes in the brick and tile industry”. Wat. Sci. Tech., 36(11), 251-258 (1997).
6. Burak Felekoglu., “Utilisation of high volumes of limestone quarry wastes in concrete industry”, Resources Conservation and Recycling, 51, 770–791 (2007).
7. Byars E. A., Morales-Hernandez B., Zhu H.Y., “Waste glass as concrete aggregate and pozzolan”, Concrete 38(1), 41–4 (2004).
8. Butler J., Hooper P. “Dilemmas in optimising the environmental benefit from recycling: A case study of glass container waste management in the UK. Resources”, Conservation and Recycling, 45, 331-355 (2005).
9. Cao L., Gao Z., Suib S. L., Obee T. N., Hay S. O., Freihaut J. D., “Photocatalytic Oxidation of Toluene on Nanoscale TiO2 Catalysts: Studies of Deactivation and Regeneration”, Journal of Catalysis Volume: 196, Issue: 2, p. 253-261 (2000).
10. Chang C. N., Ma Y. S., Fang G. C., Chao A. C., Tsai M. C., Sung H. F., “Decolorizing of lignin wastewater using the photochemical UV/TiO2 process” Chemosphere 56, 1011–1017 (2004).
11. Chang P.K., Peng Y.N., Hwang C.L., “A design consideration for durability of high-performance concrete”, Cement and Concrete Composites ,Volume: 23, Issue: 4-5, p. 375-380 (2001).
12. Cheeseman C. R. and Virdi G. S. , “Properties and microstructure of lightweight aggregate produced from sintered sewage sludge ash. Resources”, Conservation and Recycling, 45, 18-30 ( 2005).
13. Chen C. H., Huang R., Wu J.K., Yang C.C., “Waste E-glass Particles used in cementitious mixtures”, Cement Concrete Research, 36, 449–56 (2006).
14. Chen Y.C., “Introduction of mining industry in 1990”, The Taiwan Mining Industry, 53 (1), 57–90 ( 2001).
15. Chen Y.M. “Analyses of the Resources Recycling Technology and Potential Utilization of Waste Glass ”, M.D. Thesis, National Taipei University of Technology,Institute of Environmental Engineering and Management (2004).
16. Chen T.W., Ding Y.C., and Chiu J.P., “A study of synthetic forsterite refractory materials using waste serpentine cutting”. Minerals Engineering, 15, 271-275 (2002).
17. Chen X., Jeyaseelan S., and Graham N., “Physical and chemical properties study of the activated carbon made from sewage sludge”. Waste Manage, 22, 755-760 (2002).
18. Dhananjeyan M.R., Annapoorani R., Renganathan R., “A comparative study on the TiO2 mediated photo-oxidation of uracil, thymine and 6-methyluracil”, Journal of Photochemistry and Photobiology A: Chemistry Volume: 109, Issue: 2, p. 147-153 (1997).
19. Di P. A., Augugliaro V., Palmisano L., Pantaleo G., Savinov E., “Heterogeneous photocatalytic degradation of nitrophenols”, Journal of Photochemistry and Photobiology A: Chemistry Volume: 155, Issue: 1-3, p. 207-214 (2003).
20. D. Quere., F. Droplets, “Wetting of textured surfaces”, Colloids and Surfaces, Volume: 1, 14 (2002).
21. Ducman V., Mladenovic A., and Suput J.S., “Lightweight aggregate based on waste glass and its alkali-silica reactivity”. Cement and Concrete Research, 32, 223-226 (2002).
22. Einaga H., Futamura S., Ibusuki T., “Heterogeneous photocatalytic oxidation of benzene, toluene, cyclohexene and cyclohexane in humidified air: comparison of decomposition behavior on photoirradiated TiO2 catalyst”, Applied Catalysis B: Environmental Volume: 38, Issue: 3, p. 215-225 (2002).
23. Enviros., “Recycled glass market study and standards review—2004 update”, Banbury: WRAP (2004).
24. Galetakis M., Raka S., “Utilization of limestone dust for artificial stone production:an experimental approach ”, Minerals Engineering, 17, 355–357 (2004).
25. Gregory A. Pope., Thomas C. Meierding., Thomas R. Paradise., “Geomorphology’s role in the study of weathering of cultural stone”, Geomorphology, 47, 211– 225 (2002).
26. Grzechulska J., Hamerski M., Morawski A. W., “Photocatalytic decomposition of oil in water”, Water Research Volume: 34, Issue: 5, p. 1638-1644 (2000).
27. Heitor F., Mothe′ Filho, Helena Polivanov,Emı′lio V. Barroso, Cheila G. Mothe′., “Thermal and mechanical study from granite and marble industry reject”, Thermochimica Acta, 392–393, 47–50 (2002).
28. Hou P.C.,“Reuse of waste glass powder for substitution of fine aggregate in the recycling asphalt concrete”. M.D. Thesis, YunTech Department and Graduate School of Construction Engineering (2004).
29. Hsu C.W., and Cheng T.W., “Reutilization of waste serpentine”. The Sixth International Conference on Simulated Evolution And Learning, Dahan Institute of Technology Environmental Resources ManagementEnvironmental Resources Managem, 231-242 (2003).
30. Huang C.C.,,Use of waste stone sludge as cement raw materials, M.D. Thesis,Graduate Institute of Natural Resources, University dong Hwa (1998)。
31. Huang Z., Maness P. C., Blake D. M., Wolfrum, E. J., Smolinski S. L., et. al. “Bactericidal mode of titanium dioxide photocatalysis”, Journal of Photochemistry and Photobiology A: Chemistry Volume: 130, Issue: 2-3, p. 163-170 (2000).
32. John Butler, Paul Hooper ., “A case study of glass container waste management in the UK”, Resources Conservation and Recycling, 45, 331–355 (2005).
33. Johnston C. D., “Waste glass as concrete aggregate for concrete”. Journal of Testing and Evaluation, 2(5), 344-350 (1974).
34. Jones A.P. “Indoor air quality and health”, Atmospheric Environment, 33, 4535-4564 (1999).
35. Kanari N., Menad N., Gaballah I., “Some aspects of the reactivity of olivine and serpentine towards different chlorinating gas mixtures”, Thermochimica Acta, 319, 97–104 (1998).
36. Khalil L.B., Rophael M.W., Mourad, W.E., “The removal of the toxic Hg(II) salts from water by photocatalysis”, Applied Catalysis B: Environmental Volume: 36, Issue: 2, p. 125-130 (2002)
37. Kikuchi R. “Recycling of municipal solid waste for cement production: pilot-scale test for transforming incineration ash of solid waste into cement clinker”. Resources, Conservation and Recycling, 31(2), 137-147 (2001).
38. Lachheb H., Puzenat E., Houas A., Ksibi M., Elaloui E., Guillard C., et. al. “Photocatalytic degradation of various types of dyes in water by UV-irradiated titania”, Applied Catalysis B: Environmental Volume: 39, Issue: 1, p. 75-90 (2002).
39. Lakshmi S., Renganathan R., Fujita S., “Study on TiO2-mediated photocatalytic degradation of methylene blue”, Journal of Photochemistry and Photobiology A: Chemistry Volume: 88, Issue: 2-3, p. 163-167 (1995).
40. Lin C. H., “Develop a solid absorbent for dry flue desulfurization system from waste sludge discharge from stone industries”, M.D. Thesis, Graduate Institute of Natural Resources, National Dong Hwa University (1998).
41. Luo Y., Ollis D. F., “Heterogeneous photocatalytic oxidation of trichloroethylene and toluene mixtures in air: Kinetic promotion and inhibition, time-dependent catalyst activity”, Journal of Catalysis Volume: 163, Issue: 1, p. 1-11 (1996)
42. Mahltig B., BÃÃttcher H., Rauch K., Dieckmann U., Nitsche R., Fritz T., “Optimized UV protecting coatings by combination of organic and inorganic UV absorbers”, Thin Solid Films Volume: 485, Issue: 1-2, p. 108-114 (2005).
43. M.A. Rodr′guez-Valverde a, M.A. Cabrerizo-V′lchez a,*, P. Rosales-Lo′pez a, A. Pa′ez-Duen˜as b, R. Hidalgo-A′ lvarez a, “Contact angle measurements on two (wood and stone) non-ideal surfaces”, Colloids and Surfaces , Physicochemical and Engineering Aspects, 206 , 485–495 (2002).
44. Ministry of Economic Affairs, “The Application of Limestone and Serpentine Wastes”, ROC, Taipei. (1996).
45. Mohammad R., Al-Agha., “Weathering of building stones and its relationship to the sustainable management of the aggregate resources in Gaza Strip, Palestine”, Building and Environment, 41, 676–686 (2006).
46. Monzo J., Paya J., Borrachero M. V., Girbes I. “Reuse of sewage sludge ashes (SSA) in cement mixtures: the effect of SSA on the workability of cement mortars”. Waste Manage, 23, 373-381 (2003).
47. Monzo J., Paya J., Borrachero M. V., and Peris-Mora E. “Mechanical behavior of mortars containing sewage sludge ash (SSA) and portland cements with different tricalcium aluminate content“. Cement and Concrete Research, 29(1), 87-94 (1999).
48. M.Y. Lee, “Solidification of waste from the remnant of constructional materials”, M. D. Thesis, Department of Civil Engineering, National Central University (2001).
49. Onaka T. “Sewage can make Portland cement: A new technology for ultimate reuse of sewage sludge”. Wat. Sci. Tech., 41(8), 93-98 (2000).
50. Ozgür E. N., Tas A.C., “Manufacture of macroporous calcium hydroxyapatite bioceramics”, Journal of the European Ceramic Society Volume: 19, Issue: 13-14, p. 2569-2572 (1999).
51. Pan S. C., Lin C. C., and Tseng D. H., “Reusing sewage sludge ash as adsorbent for copper removal from wastewater”. Resources Conservation and Recycling, 39, 79-90 (2003).
52. Paya J., Borrachero M.V., Monzo J., Bonilla M., “Properties of portland cement mortars incorporating high amounts of oil-fuel ashes”. Waste Manage, 19(1), 1-7 (1999).
53. Park S. B., and Lee B. C., “Studies on expansion properties in mortar containing waste glass and fibers”. Cement and Concrete Research, 34, 1145-1152 (2004).
54. Park S.B., Lee B.C., and Kim J.H., “Studies on mechanical properties of concrete containing waste glass aggregate”. Cement and Concrete Research, 34, 2181-2189 (2004).
55. Paula H. Vance, B.A.,and Alice S. “The Controversies surrounding sick building syndrome”, Clinical Microbiology Newsletter, May (2007)
56. Piera E., Ayllón A., Doménech X., Peral J., “TiO2 deactivation during gas-phase photocatalytic oxidation of ethanol”, Catalysis Today. Volume: 76, Issue: 2-4, p. 259-270 (2002).
57. Pollery C., Cramer S. M., Cruz R. V., “Potential for using waste glass in portland cement concrete”, Material Civil Engineering, 10(4), 210–9 (1998).
58. Poon C.S., Kou S.C., Lam L., “Use of recycled aggregates in moulded concrete bricks and blocks”, Construction and Building Materials,16, 281–289,(2002).
59. Reddy D., Venkat., “Evaluation of natural defects in commercial decorative rock deposits in Karnataka, India ”, Gondwana Research., No. 2, p. 557-560 (2002).
60. Reutergårdh L. B., Iangphasuk M., “Photocatalytic decolourization of reactive azo dye: a comparison between TiO2 and CdS photocatalysis chemosphere”, Volume: 35, Issue: 3, p. 585-596 (1997).
61. Reutergårdh L. B., Iangphasuk M., “Photocatalytic decolourization of reactive azo dye: a comparison between TiO2 and CdS photocatalysis” Chemosphere, Volume: 35, Issue: 3, p. 585-596 (1997)
62. R.N. Wenzel, Ind. Eng. Chem. 28, 988–994 (1936)
63. Ruth M., Dell’ Anno P. “An industrial ecology of the US glass industry. Resources Policy”, 23(3), 109-124 (1997).
64. Sabaté J., Bayona J.M., Solanas A.M., “Photolysis of PAHs in aqueous phase by UV irradiation”, Chemosphere Volume: 44, Issue: 2, p. 119-124 (2001).
65. Sano T., Negishi N., Mas D., Takeuchi K., “Photocatalytic decomposition of N2O on highly dispersed Ag+ on TiO2 prepared by photodeposition”, Journal of Catalysis Volume: 194, Issue: 1, p. 71-79 (2000).
66. Seung Bum Park, Lee Bong Chun, Kim Jeong Hwan ., “Studies on mechanical properties of concrete containing waste glass aggregate”, Cement and Concrete Research, 34, 2181–2189 (2004).
67. Shao Y., Lefort T., Moras S., and Rodriguez D., “Studies on concrete containing ground waste glass”. Cement and Concrete Research, 30(1), 91-100 (2000).
68. Shayan A., and Xu A., “Value-added utilisation of waste glass in concrete”. Cement and Concrete Research, 34, 81-89 (2004) .
69. Shen Y. S., Young K., “Treatment of gas-phase volatile organic compounds (VOCs) by the UV/O3 Process”, Chemosphere, Volume: 38, Issue: 8, p. 1855-1866 (1999).
70. Shi C., Wu Y., Shao Y., Riefler C., “Alkali-aggregate reaction of concrete containing ground glass powder”, In:Proceedings of the 12th International Conference on AAR in Concrete, p. 789–95 (2004).
71. Shi Caijun., Zheng Keren., “A review on the use of waste glasses in the production of cement and concrete”, Resources Conservation and Recycling, 52, 234–247 (2007).
72. Sivalingam G., Nagaveni K., Hegde M.S., Madras, G., “Photocatalytic degradation of various dyes by combustion synthesized nano anatase TiO2” , Applied Catalysis B: Environmental, Volume: 45, Issue: 1, p. 23-38 (2003).
73. Su Nan, Chen J.S., “Engineering properties of asphalt concrete made with recycled glass”, Resources, Conservation and Recycling, 35, 259–274 (2002).
74. Surfactants/A Comprehensive Guide, Kao Corporation(Ed.), Tokyo, 42 (1983).
75. Tay J.H. and Show K.Y., “Resource recovery of sludge as a building and construction material-A future trend in sludge management”. Wat. Sci. Tech.; 36(11), 259-266 (1997).
76. Topcu I. B., and Canbaz M., “Properties of concrete containing waste glass”. Cement and Concrete Research, 34, 267-274 (2004).
77. Tsai M.S., Yen F.S., Lee C.C., “Study for recovery of MgO from serpentine”, Mining and Metallurgy, 32 (3), 138–147 (1988).
78. Tseng, I. H., Chang W. C., Wu J. “Photoreduction of CO2 using sol–gel derived titania and titania-supported copper catalysts” Applied Catalysis B: Environmental Volume: 37, Issue: 1, p. 37-48 (2002).
79. Valls S., Yague A., Vazquez E., and Mariscal C., “Physical and mechanical properties of concrete with added dry sludge from a sewage treatment plant”. Cement and Concrete Research, 34, 2203-2208 (2004).
80. Wainwright P. J. and Cresswell D.J.F. , “Synthetic aggregate from combustion ashes using an innovative rotary kiln”. Waste Manage, 21(3), 241-246 (2001).
81. Wang H.Y., Tsai K.C., “Engineering properties of lightweight aggregate concrete made from dredged silt”, Cement and Concrete Composites Volume: 28, Issue: 5, p. 481-485 (2006).
82. Wang, K. H., Jehng J. M., Hsieh Y. H., Chang C. Y., “The reaction pathway for the heterogeneous photocatalysis of trichloroethylene in gas phase”, Journal of Hazardous Materials Volume: 90, Issue: 1, p. 63-75 (2002).
83. Wang K.H., Tsai H. H., Hsieh Y. H.,“The kinetics of photocatalytic degradation of trichloroethylene in gas phase over TiO2 supported on glass bead”, Applied Catalysis B: Environmental Volume: 17, Issue: 4, p. 313-320 (1998).
84. Yang C.S., “A study on industrial ecology of glass in Taiwan”, M.D. Thesis, Institute of Natural Resource Management National Taipei University, (2004).
85. Young T. Philos Trans R Soc 1805;95:65. http://en.wikipedia.org/wiki/Surface_energy.
86. Yue Huang, Roger N. Bird., Oliver Heidrich., “A review of the use of recycled solid waste materials in asphalt pavements”, Resources Conservation and Recycling, 52, 58–73 (2007).
87. Ziolli R. L., Jardim W. F., “Photocatalytic decomposition of seawater-soluble crude-oil fractions using high surface area colloid nanoparticles of TiO2 ”, Journal of Photochemistry and Photobiology A: Chemistry, Volume: 147, Issue: 3, p. 205-212 (2002).
88. 工業技術研究院化學工業研究所,「臺灣石材廢料資源化利用途徑」,清潔生產資訊,雙月刊第一期,經濟部工業局,16-26頁 (1995)。
89. 方裕欽,「緻密混凝土工程性質之研究」,國立台灣科技大學,碩士論文 (2000)。
90. 北京中經縱橫經濟研究院 「2006中國石材市場研究預測報告/第八章石材市場分析及預測」。北京中經縱橫經濟研究院 (2006)。
91. 李明禹,「薄板抗菌自潔加勁石板材及其製法」 ,TW Pat. 189048 (2004)。
92. 李明禹,「自潔改質石材及其製法」,TW Pat. 193332 (2004)。
93. 李明禹,「夜光石材及其製法」,TW Pat. 207422 (2004)。
94. 呂正宗,「半剛性瀝青混凝土配比與性質之研究」,國立台灣科技大學,碩士論文 (1999)。
95. 林明鋒,王鯤生,「廢鑄砂及石材污泥取代水泥生料之研究」,國立中央大學環境工程研究所,碩士論文 (2005)。
96. 林宜賢,「高性能混凝土配比設計研究」,國立成功大學土木工程學系,碩士論文 (2003)。
97. 奈米協會「奈米光觸媒抗菌陶瓷面磚驗證規範草案」(2005)。
98. 吳春池,邱玉娟,「廢玻璃再生技術與再生產品之應用介紹」,台灣環保產業雙月刊, 28期, 9-11頁 (2004).
99. 財團法人石材工業發展中心,「經濟部工業局八十三年度科技專案計畫期末報告-花崗石廢泥固化技術研發與資源回收利用」,經濟部工業局(1994)。
100. 黃兆龍,「高性能混凝土理論與實務」,詹式書局,台北 (2003)。
101. 黃兆龍,「混凝土性質與行為」,詹式書局,台北 (2002)。
102. 黃英傑,「TFT-LCD產業廢玻璃資源化介紹」, 永續產業發展雙月刊, 16期, 50-55頁 (2004)。
103. 黃進福、潘同樑、林士欽,「資源化回收花崗石廢泥為水泥原料物性試驗報告」,財團法人石材工業發展中心 (1998)。
104. 陳金獅,「廢玻璃再利用於瀝青路面的研究」,雲林科技大學營建工程系碩士論文 (2001)。
105. 張添晉,鄭啟璞,連奕偉,「廢玻璃資源回收管理與再利用技術」,永續產業發展雙月刊,10期,67-74頁 (2003)。
106. 張廖年禧,「國道高速公路鋪設石膠泥及排水性瀝青混凝土成效之研究」,國立中央大學土木工程研究所碩士論文 (2003)。
107. 楊大安,「營建剩餘土石方資源再利用場設置及運轉之研究」,國立中央大學,碩士論文 (2003)。
108. 鄭銘富,「不同單位重粒料混凝土力學性質之研究」,國立台灣科技大學,碩士論文 (2002)。
109. 鄭凱維,「緻密爐石水泥混凝土工程性質之研究」,台北 (2002)。
110. 薛翰聲,「利用中孔洞沸石材料形成氮化鈦奈米金屬線及合成規則性中孔洞有機矽薄膜」,清華大學化工系,碩士論文 (2003)。
指導教授 林志棟(Jyh-dong Lin) 審核日期 2009-2-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明