博碩士論文 91342021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:18.191.157.186
姓名 楊樹榮(Shu-Rong Yang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 路基土壤之不飽和吸力特性及反覆載重下之力學行為
(Behavior of unsaturated subgrade soils under repeated loading)
相關論文
★ 電弧爐氧化碴特性及取代混凝土粗骨材之成效研究★ 路基土壤回彈模數試驗系統量測不確定度與永久變形行為探討
★ 工業廢棄物再利用於營建工程粒料策略之研究★ 以鹼活化技術資源化電弧爐煉鋼還原碴之研究
★ 低放處置場工程障壁之溶出失鈣及劣化敏感度分析★ 以知識本體技術與探勘方法探討台北都會區道路工程與管理系統之研究
★ 電弧爐煉鋼爐碴特性及取代混凝土粗骨材之研究★ 三維有限元素應用於柔性鋪面之非線性分析
★ 放射性廢料處置場緩衝材料之力學性質★ 放射性廢料深層處置場填封用薄漿之流變性與耐久性研究
★ 路基土壤受反覆載重作用之累積永久變形研究★ 還原碴取代部份水泥之研究
★ 路基土壤反覆載重下之回彈與塑性行為及模式建構★ 重載交通荷重對路面損壞分析模式之建立
★ 鹼活化電弧爐還原碴之水化反應特性★ 電弧爐氧化碴為混凝土骨材之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 路基土壤於最佳含水量附近(OMC)施工滾壓至開放交通服務期間,地下水位係分佈在地表下某一範圍深度內,而路基土壤通常位於地下水位面以上,呈不飽和狀態。土壤在不飽和狀態時,土壤吸力是一項重要的參數,因不飽和土壤有效應力會受到土壤吸力控制,而回彈模數為應力之函數。因此,本研究發展以土壤吸力及軸差應力所組合之回彈模數組成模式,於鋪面結構分析時,能考慮季節性含水量變化對路基土壤之影響。
另外,為評估路基土壤受交通載重作用下所累積之永久變形,而發展路基土壤永久變形模式,且為考慮含水量變化對路基土壤永久變形之影響,將模式發展成應力及載重次數之函數,如此可配合所發展之回彈模數組成模式,預測路基土壤在不同載重次數下之永久變形。
本研究首先係探討紅土及破碎泥岩土壤之不飽和吸力特性,並強調含水量及夯實能量對土壤吸力之影響。之後,於不同含水量下進行回彈模數試驗,且於回彈模數試驗完成後以濾紙法進行土壤吸力試驗,並探討兩者之關係。另外,以三軸反覆載重試驗評估路基土壤受到交通反覆載重作用下累積之永久變形量及回彈模數隨載重次數下之變化情形,深入探討路基土壤受反覆載重作用下之彈性及塑性行為,並據此發展回彈模數循環硬化/軟化行為及路基土壤永久變形模式。
研究結果顯示,夯實土壤之吸力特性會受到含水量和夯實能量之影響。基質吸力會隨著含水量降低而增大,然而在相同含水量下,夯實能量愈大,因土壤特性不同,基質吸力不一定會愈大,而與不飽和土壤之氣–水界面曲率有關,當曲率愈大,則基質吸力愈大。此外,試驗結果證實基質吸力較總吸力更適合作為預測路基土壤回彈模數之參數,而基於不飽和土壤有效應力觀念,本研究將傳統回彈模數軸差應力模式加以改良,納入基質吸力之影響,稱之為軸差應力–基質吸力模式,並建立土壤吸力與飽和度之關係,而可預測夯實土壤在不同含水量下之基質吸力與總吸力。
在反覆載重試驗方面,試驗結果顯示可由路基土壤三軸反覆載重試驗下之行為反應而界定出臨界應力水準,路基土壤受到高於臨界應力水準之反覆載重時,塑性應變會迅速累積,而處於不穩定的狀態,且回彈模數受反覆載重至一定次數後會發生循環軟化現象。本研究根據路基土壤三軸反覆載重作用下之塑性行為提出一多元迴歸塑性模式,以改善傳統模式之缺點,並合理預測路基土壤受到反覆載重作用下所產生之塑性變形。
摘要(英) Construction specifications generally require that subgrade soils be compacted in the field at or near optimum moisture content (OMC). As such, subgrade soils should be treated as unsaturated soils. Soil suction is a fundamental physical property of unsaturated soils, since soil suction dictates the state of stress in unsaturated soils. It was known resilient modulus model is a function of stress state. Hence, this study developed a resilient model based on deviator stress and matric suction. This study was undertaken to evaluate the variations of soil suction with the moisture content for two soils. In particular, the effects of compaction energy on soil suction were investigated. The matric suctions were determined by the filter paper method on soil specimens after the resilient modulus test.
Findings from these tests indicated that soil suction of compacted soil is influenced by the compaction energy and water content. Soil suction increases with decreasing water content. However, high compaction energy does not necessarily lead to high soil suction. Test results demonstrated that resilient modulus correlates better with the matric suction than with total suction. Matirc suction was found to be a key parameter when predicting the resilient modulus of cohesive subgrade soils. Also, a prediction model incorporating deviator stress and matric suction for subgrade soil resilient modulus, called the deviator stress-matric suction model was established.
Based on the response of subgrade soil under repeated loading tests, a critical stress level can be defined. At stress levels higher than the critical level, the plastic strain of subgrade soil accumulates rapidly and an unstable condition occurs, and soil tends to soften after a specific number of load applications.
Using the plastic strain data obtained at stress states below the critical level, a multiple regression plastic model for cohesive subgrade soils was developed. Taking both the deviator and confining stresses into account, the model can be used to predict the permanent deformation in the subgrade of flexible pavements under repeated loading in a reasonable way.
關鍵字(中) ★ 反覆載重
★ 基質吸力
★ 路基土壤
★ 不飽和土壤
關鍵字(英) ★ subgrade soils
★ unsaturated soils
★ repeated loading
★ matric suction
論文目次 第一章 緒論 1
1.1 研究背景 1
1.2 研究目的 3
1.3 研究範圍 4
1.4 研究架構與流程 5
第二章 文獻回顧 9
2.1 不飽和土壤組成 9
2.2 不飽和土壤吸力行為 12
2.3 土壤–水份特性曲線(Soil-Water Characteristic Curve) 20
2.4 不飽和土壤有效應力 25
2.5 不飽和土壤應力狀態 27
2.6 國內不飽和土壤相關研究 30
第三章 試驗材料與研究方法 33
3.1 前言 33
3.2 試驗材料 34
3.3 試體製作 35
3.4 不飽和土壤吸力量測方法 38
3.4.1 濾紙法 38
3.4.2 壓力平板法 50
3.5 路基土壤回彈模數試驗 52
3.5.1 回彈模數試驗法沿革 52
3.5.2 回彈模數試驗程序 54
第四章 不飽和夯實土壤吸力行為 67
4.1 前言 67
4.2文獻回顧 68
4.2.1 土壤吸力對工程性質之影響 68
4.2.2 不同夯實能量下之土壤吸力 68
4.2.3 不飽和土壤孔隙氣-水狀態 71
4.3 夯實能量對土壤吸力之影響 74
4.3.1孔隙氣-水狀態和基質吸力之關係 74
4.3.2夯實能量對基質吸力之影響 80
4.4 土壤–水分特性曲線 87
第五章 路基土壤含水量變化及其對土壤吸力之影響 89
5.1 前言 89
5.2 文獻回顧 90
5.2.1 美國長期鋪面成效計畫 (LTTP) 與DataPave介紹 90
5.2.2 路基土壤季節性含水量變化 95
5.2.3 路基土壤季節性含水量變化探討 99
5.2.4 路基土壤含水量狀態模擬 105
5.3 實驗室模擬路基土壤現地含水量狀態 111
5.4 路基土壤含水量變化對土壤吸力之影響 120
第六章 路基土壤回彈模數與土壤吸力之組成模式建構 123
6.1 前言 123
6.2 文獻回顧 124
6.2.1 路基土壤回彈模數影響因子 124
6.2.2 路基土壤回彈模數組成模式 129
6.3 路基土壤在不同含水量下之回彈模數 135
6.4 路基土壤回彈模數與土壤吸力之組成模式建構 143
第七章 路基土壤受反覆載重下之彈性行為 149
7.1 前言 149
7.2 文獻回顧 150
7.2.1材料受反覆載重下之典型反應特性 150
7.2.2 路基土壤受反覆載重下之彈性變形行為及模式 153
7.3 路基土壤反覆載重試驗方法 156
7.4 路基土壤靜態三軸試驗結果 159
7.5 路基土壤受反覆載重下之應力-應變行為 162
7.6 路基土壤受反覆載重下之彈性行為 165
7.6.1 反覆載重下之回彈應變 165
7.6.2 反覆載重下之回彈模數變化 168
7.6.3 回彈模數循環硬化/軟化函數建立 175
第八章 路基土壤受反覆載重下之塑性行為 179
8.1 前言 179
8.2 文獻回顧 183
8.2.1 路基土壤反覆載重下之臨界應力 183
8.2.2 路基土壤反覆載重下之塑性模式 187
8.3 路基土壤反覆載重下之塑性行為及臨界應力 191
8.3.1 含水量之影響 192
8.3.2圍壓之影響 196
8.4 路基土壤反覆載重下之塑性模式建構 200
8.4.1 εp (N) = I.NS模式 200
8.4.2 εp (N) = I + S log N 模式 203
8.4.3 εp (N) = B en X N S模式 203
8.4.4多元迴歸塑性模式建構 205
8.5 路基土壤反覆載重下之消散能行為 211
8.5.1 反覆載重下之消散能變化 211
8.5.2 消散能與回彈模數關係 220
8.5.3 消散能與塑性應變關係 224
第九章 結論與建議 227
9.1 結論 227
9.2 建議 229
參考文獻 231
參考文獻 1. Elliott, R.P., and, Thornton, S.I., “Resilient modulus-what does it mean?” Proceedings 37th Highway Geology Symposium, pp. 283-301, Helena, Montana (1986).
2. Huang, Y.H., Pavement Analysis and Design, Prentice Hall, Englewood Cliffs, N.J. (1993).
3. Uzan, J., “Resilient characterization of pavement materials,” International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 16, pp. 453-459 (1992).
4. Lu, N., and Likos, W.J., Unsaturated Soil Mechanics, John Wiley & Sons, Inc., New York (2004).
5. Muhanna, A.S., A testing procedure and a model for resilient modulus and accumulated plastic strain of cohesive subgrade soils. Ph.D. dissertation. North Carolina State University (1994).
6. Fredlund, D.G., and Morgenstern, N.R., “Stress state variables for unsaturated soils,” Journal of Geotechnical Engineering, ASCE, Vol. 5, No. 103, pp. 447-456 (1977).
7. Bear, J. Hydraulics of Groundwater, McGraw-Hill, USA (1979)
8. Lambe, T.W., “The engineering behavior of compacted clay,” Journal of Soil Mechanics and Foundation Division, ASCE, Vol. 84, SM2, Paper no.1655, pp. 1-35 (1958).
9. Croney, D., and Coleman, J.D., “Soil thermodynamics applied to the movement of moisture in road foundations,” Proc. 7th Int. Cong. Appl. Mech., Vol. 3, pp.163-177 (1948).
10. Edlefsen, N.E., and Adserson, A.B.C., “Thermodynamics of soil Moisture,” Hilgardia, Vol. 15, pp. 31-298 (1943).
11. Richards, B.G., “Measurement of the free energy of soil moisture by the psychrometric technique by using thermistors,” In Moisture Equilibria and Moisture Changes in Soils Beneath Covered Areas, A Symp. In Print. Australia: Butterworths, pp. 39-46 (1965).
12. Yong, R.N., “Soil suction and soil-water potentials in swelling clays in engineered clay barriers,” Engineering Geology, Vol. 54, pp. 3-13 (1999)
13. Krahn, and Frendlund, D.G., “On total matric and osmotic suction,” Journal of Soil Science, Vol. 114, No. 5, pp. 339-348 (1992).
14. Hillel, D., Fundamentals of Soil Physics, Academic Press, New York (1980).
15. Vanapalli, S. K., Fredlund , D. G., and Pufahl, D. E, “The effect of soil structure and stress history on the soil-water characteristics of a compact till,” Geotechnique, Vol. 49, No. 2, pp. 143-159 (1999)..
16. Fredlund, D. G., Xing, A., “Equations for the soil-water characteristic curve,” Canadian Geotechnical Journal, Vol. 31, No.4, pp. 521-532 (1994).
17. Vanapalli, S. K., Fredlund , D. G., and Pufahl, D. E., and Clifton, A. W., “Model for prediction of shear strength with respect to soil suction,” Canadian Geotechnical Journal, Vol. 31, pp. 379-392 (1996).
18. Tinjum J. M., Benson C. H., and Blotz L. R., “Soil-water characteristic curves for compacted clays,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 123, No. 11, pp. 1060-1069 (1997).
19. Bishop, A.W., “The principal of effective stress,” Teknisk Ukeblad, Vol. 106, No. 39, pp. 859-863 (1959).
20. Blight, G.E., “A study of effective stresses for volume change,” In Moisture Equilibria and Moisture Changes in Soils Beneath Covered Areas, A Symp. In Print. Australia: Butterworths, pp. 259-269 (1965).
21. Mongiovi, L., and Tarantino, A., “An apparatus to investigate on the two effective stress in unsaturated soils,” Proceedings of the Second International Conference on Unsaturated Soils, Vol. 1, pp. 422-425 (1998).
22. Burland, J.B., “Effective stress in partly saturated soils,” Geotechnique, Vol. 14, pp. 65-68 (1964).
23. Jennings J. E., and Burland, J. B., “Limitations to the use of effective stress in partly saturated soil,” Geotechnique, Vol. 12, No. 2, pp. 125-144 (1962).
24. Allam, M. M., and Sridharan, A., “Stress present in unsaturated soil,” Journal of Geotechnical Engineering, ASCE, Vol. 113, No. 11, pp.1395-1399 (1987).
25. 郭勝豐,「裸地表土蒸發對土壤水分變化與毛管補給相關之研究」,碩士論文,國立台灣大學農業工程研究所,(1987)。
26. 吳正雄,「植生根力與坡面穩定關係之研究-台灣赤楊、山黃麻、台灣杉之根力與土壤剪力相關之研究」,博士論文,國立台灣大學森林研究所,(1991)。
27. 劉家男,「林口台地邊坡坍方之綜合研究」,碩士論文,國立台灣大學土木工程研究所,(1991)。
28. 拱祥生,「降雨對不飽和土壤邊坡穩定性之影響研究」,碩士論文,國立台灣科技大學營建工程系,(1999)。
29. 張文濤,「基質吸力對於邊坡穩定性之研究 - 以林口台地為例」,碩士論文,國立台北科技大學土木與防災技術研究所,(2004)。
30. 朱信安,「林口台地非飽和紅土特性之研究」,碩士論文,國立台北科技大學土木與防災技術研究所,(2004)。
31. 呂明杰,「土壤邊坡降雨入滲行為之探討」,碩士論文,國立中原大學土木工程研究所,(2004)。
32. 葉信富,「降雨入滲對坡地穩定影響之研究-以清水溪流域為例」,碩士論文,國立成功大學資源工程研究所,(2004)。
33. 黃博男,「以黏土為背填之加勁擋土牆長期觀測與滲透試驗」,碩士論文,國立成功大學土木工程研究所,(1996)。
34. 許朝欽,「夯實行為對河堤之剪力強度與變形之影響」,碩士論文,國立成功大學土木工程研究所,(2004)。
35. 莊鴻榜,「不飽和礫石土剪力強度之研究」,碩士論文,國立台灣大學土木工程研究所,(2002)。
36. 陳漢平,「降雨入滲引致邊坡破壞機制之探討─以土石流源頭為對象」,碩士論文,國立台灣大學土木工程研究所,(2003)。
37. 李伯亨,「入滲效應與土石流發生臨界雨量線之探討及應用」,碩士論文,國立台北科技大學環境規劃與管理研究所,(2003)。
38. 戴裕聰,「土壤吸力對路基土壤之力學特性影響探討」,碩士論文,國立中央大學土木工程研究所,(2004)。
39. 黃進富,「土壤中水/有機液體保持特性研究」,碩士論文,國立交通大學土木工程研究所,(1997)。
40. 周業泗,「飽和及未飽和地層傳輸行為之研究-以嘉義白水湖、蘭嶼貯存場為例」,碩士論文,國立成功大學資源工程研究所,(1999)。
41. 葉義章,「飽和及未飽和層地下水流動對其溶質傳輸影響之研究-以核研所試驗場址為例」,碩士論文,國立成功大學資源工程研究所,(2001)。
42. 黃隆茂,「部分飽和夯實礫石土之抗剪強度」,碩士論文,國立中興大學土木工程研究所,(1993)。
43. 陳冠閔,「塑性指數對未飽和紅土抗剪強度之影響」,碩士論文,國立中興大學土木工程研究所,(2001)。
44. 游功揚,「尺度變化下之入滲行為」,碩士論文,國立中興大學水土保持研究所,(1994)。
45. 許瑞昌,「未飽和層土壤水分垂直入滲之數值模擬」,碩士論文,國立台灣大學農業工程研究所,(1998)。
46. 楊志盛 ,「天然災變下現地未飽和土壤地溫及水分流向特性分析」,碩士論文,雲林科技大學環境與安全工程系,(2001)。
47. 郭麗娥,「未飽和紅土水力傳導係數之研究」,碩士論文,國立中原大學土木工程研究所,(2003)。
48. 薛經民,「未飽和土壤電導度與電磁特性之相關研究」,碩士論文,國立中興大學土木工程學系,(1998)。
49. 陳平天,「單向度未飽和大應變壓密理論及其應用」,碩士論文,國立中央大學土木工程研究所,(1989)。
50. 張簡有勝,「未飽和層狀土壤在自然排水下沉陷機制研究」,碩士論文,國立中原大學土木工程研究所,(1997)。
51. 連健淵,「不飽和土壤變形參數之研究」,碩士論文,國立交通大學土木工程研究所,(2000)。
52. 林宏勳,「不飽和土壤孔隙壓力參數之研究」,碩士論文,國立交通大學土木工程研究所,(1999)。
53. 吳立炫,「築壩土石材料強度與濕陷性之探討」,碩士論文,私立中華大學土木工程研究所,(2000)。
54. 林明義,「九份二山崩塌地土壤水份特性之研究」,碩士論文,國立中興大學水土保持研究所,(2000)。
55. 林子雲,「鹽化土壤遲滯現象之研究」,碩士論文,國立台灣大學生物環境系統工程學系暨研究所,(2003)。
56. 劉建榮,「van Genuchten土壤特性曲線參數對濕鋒模擬與暫態補注量之影響」,碩士論文,私立逢甲大學土木及水利工程研究所,(2001)。
57. Yang, R.J., Chen, W.C., and Huang, W.H., “Effect of compaction energy on soil suction of clayey soils,” Clays in Natural & Engineered Barriers for Radioactive Waste Confinement, Proceedings 2nd International Meeting, Andra, France (2005).
58. Fredlund, D.G., and H. Rahardjo., Soil Mechanics for Unsaturated Soils, John Wiley & Sons, Inc., New York (1993).
59. ASTM Standard, D5298-94: Standard Test Method for the Measurement of Soil Potential (Suction) Using Filter Paper, Annual Book of ASTM Standards, Vol. 04.09, Soil and Rock (Ⅱ): D4943-latest, ASTM International, West Conshohocken, PA, pp. 1113-1118 (2000).
60. Gardner, R., “A Method of measuring the capillary tension of soil moisture over a wide moisture range,” Soil Science, Vol. 43, No. 4, pp. 277-283 (1937).
61. Fawcett, R. G. and Collis-George, N., “A filter-paper method for determining the moisture characteristics of soil,” Australian Journal of Experimental Agriculture and Animal Husbandry, Vol. 7, pp. 162-167 (1967).
62. McQueen, I. S. and Miller, R. F., “Calibration and evaluation of a wide-range gravimetric method for measuring moisture stress,” Soil Science, Vol.106, No. 3, pp. 225-231 (1968).
63. Al-Khafaf, S. and Hanks, R. J., “Evaluation of the filter paper method for estimating soil water potential,” Soil Science, Vol. 117, No. 4, pp. 194-199 (1974).
64. McKeen, R. G., “Field studies of airport pavement on expansive clay,” Proceedings 4th International Conference on Expansive Soils, ASCE, Vol. 1, pp.242-261, Denver, Colorado (1980).
65. Hamblin, A. P., “filter paper method for routine measurement of field water potential,” Journal of Hydrology, Vol. 53, No. 3/4, pp.355-360 (1981).
66. Chandler, R. J. and Gutierrz, C. I., “The filter paper method of suction measurements,” Geotechnique, Vol. 36, pp. 265-268 (1986).
67. Houston, S. L., Houston, W. N., and Wagner, A. M., “Laboratory filter paper measurements,” Geotechnical Testing Journal, Vol. 17, No. 2, pp. 185-194 (1994).
68. Swarbrick, G. E., “Measurement of soil suction using the filter paper method,” First International Conference on Unsaturated Soils, Eds.: E. E. Alonso and P. Delage, Vol. 2, Paris, 6-8 September, ENDPC, pp. 701-708 (1995).
69. Greacen, E.L., Walker, G.R., and Cook, P.G., “Procedure for the filer paper method of measuring soil water suction,” Division of Soils, Report No. 108, CSIRO Division of Water Resources, Glen Osmond, South Australia, Australia (1989).
70. Schofield, R. K., “The pF of the water in soil,” Transactions, 3rd International Congress of Soil Science, Vol. 2, pp. 37-48 (1935).
71. Bulut, R., Lytton, R.L., and Wray, W.K., “Soil suction measurements by filter paper,” Geotechnical Special Publication, No. 115, pp. 243-261 (2001).
72. Likos, W.J., and Lu, N., “On the filter paper technique for the measurement of total soil suction,” 81th Annual Meeting of Transportation Research Board, CD-ROM. National Research Council, Washington, D.C. (2002).
73. AASHTO, Designation: T292-91; Standard Method of Test for Resilient Modulus of Subgrade Soils and Untreated Base/Subbase Materials, American Association of State Highway and Transportation Officials (1992).
74. Asphalt Institute, Thickness Design - Asphalt Pavement for Highways and Streets, Ninth, Manual Series No.1 (MS-1), The Asphalt Institute (1981).
75. AASHTO, Guide for Design of Pavement Structures, American Association of State Highway and Transportation Officials (1986).
76. AASHTO, Designation: T274-82; Standard Method of Test for Resilient Modulus of Subgrade Soils, American Association of State Highway and Transportation Officials (1986).
77. 盧俊鼎、黃偉慶,「路基土壤回彈模數試驗方法的演進與設備校正」,第九屆鋪面工程研討會論文集,第487-496頁,(1997)。
78. AASHTO, Designation: T274-82; Standard Method of Test for Resilient Modulus of Subgrade Soils, American Association of State Highway and Transportation Officials (1986).
79. AASHTO, Designation: T294-92; Standard Method of Test for Resilient Modulus of Unbound Granular Base/Subbase Materials and Subgrade Soils-SHRP Protocol P46, American Association of State Highway and Transportation Officials (1994).
80. AASHTO, Designation: T307-99; Standard Method of Test for Determining the Resilient Modulus of Soils and Aggregate Materials, American Association of State Highway and Transportation Officials (2003).
81. Lambe, T.W., “The structure of compacted clay.” Journal of Soil Mechanics and Foundation Engineering, ASCE, 84, SM2, pp.1654-1 to 1654-34 (1958).
82. Das, B.M., Principles of Geotechnical Engineering, Pacific Grove, CA, (2002).
83. Likos, W.J., and Lu, N., “Automated measurement of total suction characteristics in the high suction range: Application to the Assessment of Swelling Potential,” Transportation Research Record, No. 1755, pp. 119-128 (2001).
84. Huang, S.Y., Fredlund, D.G., and Barbour, S.L., “Measurements of the coefficient of permeability of an unsaturated soil,” Proc. of the 1st Intl. Conf. on unsaturated soils, Vol. 2, pp. 505-511, Paris (1995).
85. Garbulewski, K., and Zakowicz, S., “Suction as an indicator of soil expansive potential,” Proc. of the 1st Intl. Conf. on unsaturated soils, Vol. 2, pp. 593-599, Paris (1995.)
86. Yang, R.R., Huang, W.H., and Tai, Y.T., “Variation of resilient modulus with soil suction for compacted subgrade soils,” 84th Annual Meeting of Transportation Research Board, CD-ROM. National Research Council, Washington, D.C. (2005).
87. Miller, C.J., Yesiller, N., Yaldo, K. and Merayyan, S., “Impact of soil type and compaction conditions on soil water characteristic,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 128, No. 9, pp. 733-742 (2002).
88. Rao, S.M., and Revanasiddappa K., “Role of matric suction in collapse of compacted clay soil,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 126, No. 1, pp. 85-90 (2000).
89. Rao, S.M., and Revanasiddappa K., “Role of soil structure and matric suction in collapse of a compacted clay soil,” Geotechnical Testing Journal, Vol. 26, No. 1, pp. 1-9 (2003).
90. Marinho, F. A.M., and Stuermer, M. M., “Influence of the compaction energy on the SWCC of a residual soil,” Geotechnical Special Publication, No. 99, 25-141 (2000).
91. Kohgo,Y., Nakano, M., and Miyazaki, T., “Theoretical aspects of constitutive modeling for unsaturated soils,” Soils and Foundations, Vol. 33, No. 4, pp. 49-63 (1993).
92. Chen, Y.J., and Yu, P.J., “Pore pressure dissipation features of an unsaturated compacted soil,” Proc. of the 1st Intl. Conf. on unsaturated soils, Vol. 2, pp. 439-445, Paris (1995).
93. Sumner, M.E., Handbook of Soil Science, CRC Press, Boca Raton (2000).
94. Sivakumars, V., and Dorant, I. G., “Yielding characteristics of unsaturated compacted soils,” Mechanics of Cohesive-Frictional Materials, Vol. 5, pp. 291-303 (2000).
95. Baver, L.D., Gardner, W.H., and Gardner, W.R., Soil Physics, John Wiley & Sons, New York (1972).
96. Churilla, C. J., “LTPP: The Next Decade,” Public Roads, Vol. 62, No.1 (1998).
97. Mark and Signature, Long-Term Pavement Performance Information Management System Data User’ Reference Manual, Report No. FHWA-RD-96, Federal Highway Administration (1996).
98. Drumm, E.C. and Meier, R., LTPP Data Analysis:Daily and Seasonal Variations in Insitu Material Properties, Final report, prepared for National Cooperative Highway Research Program, Project 20-50, Transportation Research Board, National Research Council (2003).
99. Thadkamalla, G.B., and George, K.P., “Characterization of subgrade soils at simulated field moisture,” In Transportation Research Record: Journal of the Transportation Research Board, No. 1481, pp. 21-27 (1995).
100. Quintus, H.V., and Killingsworth, B., Analyses relating to pavement material characterizations and their effects on pavement performance, Report No. FHWA-RD-97-085, Federal Highway Administration (1998).
101. Uzan. J., “Characterization of clayey subgrade materials for mechanistic design of flexible pavements,” In Transportation Research Record: Journal of the Transportation Research Board, No. 1629, pp. 188-196 (1998).
102. Elfino, M.K., and Davidson, J.L., “Modeling field moisture in resilient modulus testing,” Geotechnical Special Publication, No. 24, ASCE, pp. 31-51 (1989).
103. McGhee, K. H., Summary of the Proposed 2002 Pavement Design Guide, NCHRP Project 1-37A, Interim Report, National Cooperative Highway Research Project, Transportation Research Board (1999).
104. Lytton, R.L., Pufahl, D.E., Michalak, C.H., Liang, H.S. and Dempsey, B.J., An Integrated Model Of Climatic Effects On Pavements, Report No. FHWA-RD-90-033, Federal Highway Administration (1989).
105. Larson, G. and Dempsey, B.J., Enhanced Integrated Climatic Model Version 2.0, Report No. DTFA MN/DOT 72114, University of Illinois at Urbana-Champaign, (1977).
106. Richter, C.A. and Witczak, M.W., “Application of LTPP Seasonal Monitoring Data to Evaluate Volumetric Moisture Predictions From The Integrated Climatic Model,” Transportation Research Board 80th Annual Meeting, Washington, DC, (2001).
107. Rainwater N. R., Yoder, E. R., Drumm, C. E., and Wilson., V. G., “Comprehensive monitoring systems for measuring subgrade moisture conditions,” Journal of Transportation Engineering, ASCE, Vol. 123, No. 5, pp. 439-448 (1999).
108. 楊樹榮,「路基土壤反覆載重下之回彈及塑性行為及模式建構」,國立中央大學土木工程系碩士論文,(2002)。
109. Thornton, S.I., and Elliott, R.P., “Resilient modulus-what is it?” Proceedings 37th Highway Geology Symposium, pp. 267-282, Helena Montana (1986).
110. Elliott, R.P., and Thornton, S.I., “Simplification of subgrade resilient modulus testing,” Transportation Research Record, No. 1192, pp.1-7 (1988).
111. Seed, H.B., and Chan, C.K., “Undrained strength of compacted clays after soaking,” Journal of Soil Mechanics and Foundation Engineering, ASCE, Vol. 85, No.5, pp.87-128 (1959).
112. Seed, H.B., Chen, C.K., and Lee, C.E., “Resilience characteristics of subgrade soils and their relation to fatigue in asphalt pavement,” Proceedings, First International Conference on the Structure Design of Asphalt Pavement, pp. 611-636, University of Michigan (1962).
113. Drumm, E.C., Reeves, J.S., Madgett, M.R., and Trolinger, W.D., “Subgrade resilient modulus correction for saturation effects,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 123, No. 7, pp. 663-670 (1997).
114. Fredlund, D.G., and Berbergan, A.T., “Relation between resilient modulus and stress conditions for cohesive subgrade soils,” Transportation Research Record, No. 642, pp. 73-81(1977).
115. Thompson, M.R., and Robnett, Q.L., “Resilient properties of subgrade soil,” Journal of Transportation Engineering, ASCE, Vol. 105, No. 1, pp. 71-89 (1979).
116. Muhanna, A.S., Rahman, M.S., and Lambe, P.C., “Resilient modulus measurement of fine-grained subgrade soils,” Transportation Research Record, No. 1687, pp. 3-12 (1999).
117. 陳進、林志棟,「路基紅土回彈模數(Mr)特性之研究」,第六屆路面工程學術研討會論文集,第17-40頁,(1992)。
118. Mohammad, L.N., Puppala, A.J., and Alavilli, P, “Influence of testing procedure and LVDT location on resilient modulus of soils,” Transportation Research Record, No. 1462, pp. 91-101 (1994).
119. Muhanna, A.S., Rahman, M.S., and Lambe, P.C, “Model for resilient modulus and permanent strain of subgrade soils,” Transportation Research Record, No. 1619, pp. 85-93 (1998).
120. Pezo, R.F., Carlos, G., Hudson, W.R., and StokoeⅡ, K.H., Development of reliable resilient modulus test for subgrade and non-granular subbase materials for use in routine pavement design, Report Ⅱ 77-4F, Center for Transportation Research, Universty of Texas at Austin (1992).
121. 蘇百加,「夯實紅土材料回彈模數之研究」,碩士論文,國立台灣科技大學,台北,(1988)。
122. 盧俊鼎、黃偉慶,「路基土壤回彈模數試驗系統校正及試體預處理效應評估」, 第十屆鋪面工程研討會論文集,第37-46頁,(1999)。
123. 劉明樓、黃琇雯、蘇珍立,「不同回彈模式對路面績效影響之分析」,第一屆鋪面工程師生研究成果聯合發表會,中壢,第54-63頁,(2000)。
124. Dunlap, W.S. A report on a mathematical model describing the deformation characteristics of granular materials, Technical Report 1, Project 2-8-62-27, TTI, Texas A&M Univ (1963).
125. Seed, H.B., Mitry, F.G, Monismith, C.L., and Chen, C.K., Prediction of flexible pavement deflections from laboratory repeated-load tests, NCHRP Report 35, Highway Research Board (1967).
126. Brown, S.F., Lashine, A.K.F., and Hyde, A.F.L., “Repeated load triaxial testing of a silty clay,” Geotechnique, Vol. 25, No. 1, pp.95-114 (1975).
127. Figueroa, J.L., and Thompson, M.R., “Simplified structural analysis of flexible pavement for secondary roads based on ILLI-PAVE,” Transportation Research Record, No. 776, pp.5-10 (1980).
128. Raymond, G.P., Gaskin, P.N., and Addo-Abedi, F.Y., “Repeated compressive loading of Leda clay,” Canadian Geotechnical Journal, Vol. 14, No. 1, pp. 1-10 (1979).
129. Drumm, E.C., Boateng-Poku, Y., and Pierce, T.J., “Estimation of subgrade resilient modulus from standard test,” Journal of Geotechnical Engineering, ASCE, Vol. 108, GT10, pp. 1215-1229 (1990).
130. Konder, R.L., “Hyperbolic stress-strain response: cohesive soils,” Journal of Soil Mechanics and Foundation Engineering, ASCE, Vol. 89, No. 1, pp. 115-143 (1963).
131. Uzan, J., “Characterization of granular material,” Transportation Research Record, No. 1022, pp. 52-59 (1985).
132. Puppala, A., Mohammad, L.N., and Allen, A., “Engineering behavior of lime-treated Louisiana subgrade soil,” Transportation Research Record, No. 1546, pp. 24-31 (1996).
133. Pezo, R.F., “A general method of reporting resilient modulus tests of soils, A pavement engineer’s point of view,” 72nd Annual Meeting of Transportation Research Board, National Research Council, Washington D.C. (1993).
134. Ni, B., Hopkins, T.C., Sun, L., Beckham, T.L., “Modeling the resilient modulus of soils,” In Proc., 6th International Conference on the Bearing Capacity of Roads, Railways and Airfields, A.A. Balkema Publishers, Vol. 2, pp. 1131-1142 (2002).
135. Mohammad, L. N., Huang, B., Puppala, A.J., and Allen, A., “Regression model for resilient modulus of subgrade soils,” Transportation Research Record, No. 1687, pp. 47-54 (1999).
136. Johnson, T. C., Berg, R.L., Chamberlain, E.J., and Cole, D.M., Frost Action Predictive Techniques for Roads and Airfields, A Comprehensive Survey of Research Findings. CRREL Report 86-18, US Army Corps of Engineers, Cold Regions Research & Engineering Laboratory (1986).
137. Sauer, E.K., and Monismith, C.L., “Influence of soil suction on behavior of a glacial till subjected to repeated loading,” Highway Research Record, No. 215, pp. 8-23 (1968).
138. Khoury, N.N., Musharraf, Z.M., Nevels, J.B., and Mann, J., “Effect of soil suction on resilient modulus of subgrade soil using the filter paper technique,” CD- ROM, Transportation Research Board, National Research Council, Washington, D.C. (2003).
139. Loret, B., and Khalili, N., “An effective stress elastic–plastic model for unsaturated porous media,” Mechanics of Materials, Vol. 34, pp. 97-116 (2002).
140. Khalili, N., Khabbaz, M.H., “A unique relationship for χ for the determination of the shear strength of unsaturated soils,” Geotechnique, Vol. 48, No. 2, pp. 1-7 (1998).
141. LTTP, Protocol P46: Resilient Modulus of Unbound Granular Base/Subbase Materials and Subgrade Soils, Federal Highway Administration (1996).
142. Li, J., and Qubain, B.S., “Resilient modulus variations with water content,” ASTM Special Technical Publication, 1437, pp. 59-69 (2002).
143. Culley, R.W., “Effect of freeze-thaw cycling on stress-strain characteristics and volume change of a till subjected to repeated loading,” Canadian Geotechnical Journal, Vol. 8, No. 3, pp. 359-371 (1971).
144. Werkmeister, S., Dawson, A.R., and Wellner, F., “Permanent deformation behavior of granular materials and the shakedown concept,” Transportation Research Record, No. 1757, pp. 75-81 (2001).
145. 佘健維,「單向對稱應力循環下之棘齒行為研究」,國立臺灣大學土木工程學研究所碩士論文,中華民國台灣 (2001)。
146. Brown, S.F., “Soil mechanics in pavement engineering,” Geotechnique, Vol. 46, No. 3, pp. 383-426 (1996)
147. Muhanna, A.S., A testing procedure and a model for resilient modulus and accumulated plastic strain of cohesive subgrade soils. Ph.D. dissertation. North Carolina State University (1994).
148. Chen, D.H., Zaman, M.M., and Laguros J.G., “Resilient moduli of aggregate materials: variability due to testing procedure and aggregate type,” Transportation Research Record, 1462, pp. 57-64 (1994).
149. International Union of Railways, Question 71, Stresses in the rails, the ballast and in the formation resulting from traffic loads, In repeated loading of clay and track foundation design. IUR Office for Research and Experiments, Utrecht, Report 12, pp.45 (1970).
150. Makiuchi, K., and Shackel, B, “Soil characterization using a repeated loading cubical triaxial apparatus,” Proceedings, 8th Australian Road Research Board Conference, Vol. 8 No. 7, pp. 22-29 (1976).
151. 張行、趙軍,「金屬構件應用疲勞損傷力學」,第一版,國防工業出版社,北京 (1998)。
152. Sebaaly, P. E., and Tabatabaee, N., “Effect of tire parameters on pavement damage and load-equivalency factors,” Journal of Transportation Engineering, ASCE, Vol.118, No.6, pp.805-819 (1993).
153. 宋侑玲,「重載交通荷重對路面損壞分析模式之建立」,博士論文,國立中央大學土木工程研究所,(2003)。
154. 陳惠華,「重車對路面結構之影響」,碩士論文,國立中央大學土木工程研究所,(1999)。
155. 陳式毅,「路面損壞個案分析」,台灣公路工程,第十七卷,第二期,第2-21頁,(1990)。
156. Claessen, A. I. M., Edwards, j. M., Sommer, P., and Uge, P., “Asphalt pavement design – The Shell Method,” Proc., 4th International Conference on the Structural Design of asphalt Pavements, Vol. 1, pp.39-74 (1977).
157. Barker, W. R., and Brabston, Development of a Structural Design Procedure for Flexible Airport Pavements, FAA Report No. FAA-RD-74-199, U.S. Army Corps of Engineers waterways Experimental station, Federal Aviation Administration (1975).
158. Larew, H.G., and Leonards, G.A., “A repeated load strength criterion,” Proceedings, 41, Highway Research Board, pp. 529-556 (1962).
159. Gaskin, P.N., Raymond, G.P., and Addo-Abedi, F.Y., “Repeated compressive loading of a sand,” Canadian Geotechnical Journal, Vol. 16, pp. 798-802 (1979).
160. Mitchell, R.J., and King, R.D., “Cyclic loading of an Ottawa area Champian sea clay,” Canadian Geotechnical Journal, Vol. 14, pp. 52-63 (1976).
161. Behzadi, G., and Yandell, W.O., “Determination of elastic and plastic subgrade soil parameters for asphalt cracking and rutting prediction,” Transportation Research Record, 1540, pp. 97-104 (1996).
162. Monismith, C.L., Ogawn, N., and Freeme, C.R., “Permanent deformation characteristics of subgrade soils due to repeated loading,” Transportation Research Record, 537, pp. 1-17 (1975).
163. Norman, D., Pumphrey, J.R., and Lentz, R.W., “Deformation analyses of Florida highway subgrade sand subjected to repeated load triaxial tests,” Transportation Research Record, 1089, pp. 49-56 (1986).
164. Diyaljee, A.M., and Raymond, G.P., “Repetitive load deformation of cohesionless soil,” Journal of the Geotechnical Engineering, ASCE, Vol. 123, No. 7, pp. 663-670 (1982).
165. Lotfi, H.A., Development of rational compaction specification cohesive soils, PhD. Dissertation, University of Maryland (1984).
166. Yapa, K.A.S.A., “Simplified mechanistic rut depth prediction procedure for low volume roads,” Master’s thesis, Texas A&M University (1988).
167. Kenis, W., “Prediction design procedures-a design method for pavements using the VESYS structural subsystem,” Proceeding, 4th International Conference on Structural Design of Asphalt Pavement, Ann Arbor, Mich., pp.101-133 (1977).
168. Tseng, K.H., and Lytton, R.L., “Prediction of pavement deformation in flexible pavement materials,” Presented at ASTM Symposium Implication of Aggregates in the Design, Construction and Performance of Flexible Pavements, New Orleans, La. (1986).
169. 黃偉慶,「路基土壤對鋪面績效影響之研究」,交通部科技顧問室,(2001)。
170. Witczak, M.W., “2002 guide for mechanistic pavement design,” International Conference on Highway Pavement Data, Analysis and Mechanistic Design Applications, Columbus, Ohio (2003).
171. Nemat, N.S., and Shokooh, A. A, “Unified approach to densification and liquefaction of cohesionless sand in cyclic shearing,” Canadian Geotechnical Journal, Vol. 16, pp. 659-678 (1979).
172. Law, K.T., Cao, Y.L., and He, G.N., “An energy approach for assessing seismic liquefaction potential,” Canadian Geotechnical Journal, Vol. 27, pp. 320-329 (1990).
173. Cao, Y.L., and Law, K.T., “Energy dissipation and dynamic behavior of clay under cyclic loading,” Canadian Geotechnical Journal, Vol. 29, pp. 103-111 (1992).
174. Vozensenky, E.A., and Nordal, S., “Dynamic instability of clays: an energy approach,” Soil Dynamic and Earthquake Engineering, Vol. 18, pp. 125-133 (1999).
指導教授 黃偉慶(Wei-Hsing Huang) 審核日期 2005-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明