博碩士論文 92521029 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:3.135.192.215
姓名 蔡志育(Chih-Yu Tsai)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 寬頻劃碼多工進接接收機之射頻前端電路研製
(The Study of RF Front-End Circuits for WCDMA Receiver)
相關論文
★ 應用於筆記型電腦數位電視單極天線之研製★ 應用於數位機上盒與纜線數據機之電纜多媒體傳輸標準多工濾波器
★ 印刷共面波導饋入式多頻帶與超寬頻天線設計★ 微波存取全球互通頻段前向匯入式功率放大器與高效率Class F類功率放大器暨壓控振盪器電路之研製
★ 應用於矽基功率放大器與混頻器之傳輸線型變壓器研究★ 應用於V-頻段射頻收發機前端電路之低功耗源極注入式混頻器之研製
★ 應用積體電路上方後製程與整合被動元件於互補式金氧半導體製程之系統封裝研究★ 應用fT-倍頻電路架構於毫米波壓控振盪器與注入鎖定除頻器之研製
★ 應用傳輸線型變壓器於X/K–Ka/V頻段全積體整合之寬頻互補式金氧半導體功率放大器研製★ 應用於K / V 頻段低功耗混頻器之研製
★ 應用於K/V頻段之低功耗CMOS低雜訊放大器之研究★ 應用於5-GHz CMOS射頻前端電路之低電壓自偏壓式混頻器與高線性化功率放大器之研製
★ 應用於 K 頻段射頻接收機之寬頻低功耗 CMOS 低雜訊放大器之研製★ 應用磁耦合變壓器於K頻段之低功耗互補式金氧半導體壓控振盪器研製
★ 應用於K頻段之單向化全積體整合功率放大器與應用於V頻段之寬頻功率放大器研製★ 應用於C/X頻段全積體整合之互補式金氧半導體寬頻低功耗降頻器與寬頻功率混頻器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要
本論文採用台積電0.35微米矽鍺雙載子互補金屬氧化半導體製程,實現寬頻劃碼多工進接接收機之射頻前端電路;論文內容分成接收機系統之規格分析與電路設計兩部分,其中第二章為寬頻劃碼多工進接接收機系統之設計規劃,根據3GPP規範與測試標準,推導出射頻接收機之系統規格:雜訊指數<8.7dB,相鄰頻道靈敏度>34dB,輸入二階截取點>-15dBm,輸入三階截取點>-16.8dBm,在與振盪頻率距8MHz的相位雜訊<-129dBc/Hz。
第二部分的接收機之射頻前端電路設計為主要研究內容,包含低雜訊放大器、混波器、壓控振盪器與除頻器,以下將概述各電路之實際量測結果:
第三章為微混波器設計,其量測結果轉換增益8dB,輸入1dB壓縮點為-12dBm,輸入三階截取點為2dBm,所有埠之間的訊號隔離度皆大於23dB,中頻頻寬為150MHz。
第四章為差動式可變增益低雜訊放大器,其量測結果增益16.5dB,雜訊指數為2.1dB,輸入1 dB壓縮點為-15dBm,輸入三階截取點為-2dBm,增益控制範圍為11dB。
第五章為全對稱差動式可變增益接收機,其量測結果轉換增益16dB,雜訊指數為3.2dB,輸入1 dB壓縮點為-30dBm,輸入二階截取點為25dBm,輸入三階截取點為-17dBm,所有埠之間的訊號隔離度皆大於32dB,增益控制範圍為11dB。
第六章為雙端考畢茲壓控振盪器與除頻器的設計,其中2.15GHz振盪器量測結果為相位雜訊-97.3dBc/Hz,輸出功率為-9dBm,可調頻率範圍為225MHz;4.3GHz振盪器與除頻器量測結果為相位雜訊-94.6dBc/Hz,輸出功率為-6dBm,可調頻率範圍為379MHz,除頻器輸出功率為-8.58dBm。
摘要(英) Abstract
In this work, RF front-end circuit for WCDMA receiver is implemented by using tsmc SiGe 0.35?m BiCMOS process. This thesis is divided into two parts which are the analysis system-level specifications of WCDMA receiver and front-end circuits design. The first part is described in chapter 2, The detail derive of the receiver requirements according to the 3GPP specifications and standard testing are introduced. The required specifications are as following: NF<8.7dB, Adjacent-Channel Selectivity>34dB, IIP2>-15.6dBm, IIP3>-16.8dBm and Phase Noise<-129dBc @ 8MHz offset.
The second part of RF front-end circuit for WCDMA receiver is the main research in this thesis, such as low noise amplifier, micromixer, voltage-controlled oscillator and frequency divider designs. Following are the measured results of these designs.
Chapter 3 is micromixer design and the measurements of conversion gain is 8dB, input power at the 1-dB gain compression point is -12dBm, input third-order intercept point is 2dBm, all port-to-port isolations are greater than 23dB and IF bandwidth is 150MHz.
Chapter 4 is the design of differential variable gain LNA and the measurements of gain is 16.5dB, noise figure is 2.1dB, input power at the 1-dB gain impression point is -15dBm, input third-order intercept point is -2dBm and gain control range is 11dB.
Chapter 5 is the design of fully differential variable gain receiver and the measurements of conversion gain is 16dB, noise figure is 3.2dB, input power at the 1-dB gain impression point is -30dBm, input second-order intercept point is 25dBm, input third-order intercept point is -17dBm, all port-to-port isolation is greater than 32dB and gain control range is 11dB.
Chapter 6 is the design of differential Colpitts VCO and frequency divider, the measurements of 2.15GHz VCO are as following: phase noise: -97dBc/Hz @100KHz offset, output power: -9dBm and tuning range: 225MHz. The measurements of 4.3GHz VCO and frequency divider are following: phase noise: -94.6dBc/Hz @100KHz offset, output power: -6dBm, tuning range: 379MHz and divider output power is -8.58dBm.
關鍵字(中) ★ 寬頻劃碼多工進接
★ 射頻接收機
★ 矽鍺雙載子互補金屬氧化半導體製程
關鍵字(英) ★ RF Receiver
★ SiGe BiCMOS process
★ WCDMA
論文目次 Abstract ……………………………………………………………………………ii
Content ………………………………………………………………………………v
List of Figures …………………………………………………………………vii
List of Tables ……………………………………………………………………x
Chapter 1 Introduction 1
1-1 Motivation 1
1.2 Thesis Overview 1
Chapter 2 System Specifications of WCDMA Receiver 3
2.1 System Overview 3
2.2 Receiver Architecture 3
2.3 Analysis of the System-Level Specifications 5
2.3.1 Noise Figure 8
2.3.2 Dynamic Range 9
2.3.3 Adjacent-Channel Selectivity 9
2.3.4 Second-Order Intercept Point 9
2.3.5 Third-Order Intercept Point 11
2.3.6 Phase Noise 12
2.4 Conclusion 14
Chapter 3 Design of the Fully Integrated Micromixer 15
3.1 Introduction 15
3.2 Circuit Design and Implementation 16
3.3 Measurements 19
3.4 Discussion and Conclusion 26
Chapter 4 Design of the Differential Variable Gain LNA 27
4.1 Introduction 27
4.2 Circuit Topology and Theory 27
4.3 Circuit Design and Implementation 32
4.3.1 Design Concept 32
4.3.2 Gain-Controlled Mechanism 33
4.4 Measurement 34
4.5 Discussion and Conclusion 43
Chapter 5 Design of the Fully Differential Variable Gain Receiver 44
5.1 Introduction 44
5.1.1 Heterodyne Receiver 44
5.1.2 Direct-Conversion Receiver 45
5.1.2.1 DC Offset 46
5.1.2.2 Even-Order Distortion 48
5.1.2.3 Flicker Noise 48
5.1.2.4 I/Q Mismatch 49
5.1.2.5 LO Radiation 49
5.2 Circuit Topology and Theory 50
5.3 Circuit Design and Implementation 50
5.3.1 Design Concept 50
5.3.1 Gain-Controlled Mechanism 51
5.4 Measurement 52
5.5 Discussion and Conclusion 61
Chapter 6 Design of the Differential Colpitts VCO 63
6.1 Introduction 63
6.1.1 Oscillator Theory 64
6.1.2 Linear Time-Invariant Theory 65
6.1.3 Linear Time-Varying Theory 66
6.2 Differential Colpitts VCO 71
6.2.1 Circuit Topology and Theory 71
6.2.2 Circuit Design and Implementation 73
6.2.3 Measurement 75
6.2.4 Discussion and Conclusion 80
6.3 4.3GHz Differential Colpitts VCO and Divider 84
6.3.1 Circuit Topology and Theory 84
6.3.2 Circuit Design and Implementation 86
6.3.3 Measurement 89
6.3.4 Discussion and Conclusion 94
Chapter 7 Conclusions and Future Works 95
References 97
參考文獻 [1] B. Razavi,” RF microelectronics,” Prentice Hall, 1998.
[2] J. H. Mikkelsen, T. E. Kolding, T. Larsen, T. Klingenbrunn, K. I. Pedersen, and P. Mogensen, “Feasibility Study of DC Offset Filtering for UTRA-FDD/WCDMA Direct-Conversion Receiver”, in Proc. 17th IEEE NORCHIP conf., Oslo, Norway, pp.34-39, Nov. 1999.
[3] http://www.muruta.com
[4] Third Generation Partnership Project (3GPP), “UE Radio Transmission and Reception (FDD)”, Technical Specification 25.101, vol.3.0.0, October 1999.
[5] B. Ramachandran, J. Vasa, and A. Loke, “Key Specifications and Implementation of WCDMA Receiver”, Proceedings of the 2001 International Symposium on VLSI Technology, System and Applications, pp.49-52, April 2001.
[6] O. K. Jensen, T. E. Kolding, C. R. Iversen, S. Laursen, R. V. Reynisson, J. H. Mikkelsen, E. Pedersen, M. B. Jenner and T. Laursen, “RF Receiver Requirements for 3G W-CDMA Mobile Equipment”, Microwave J., pp.22-30, Feb. 2000.
[7] S. K. Reynolds, B. A. Floyd, T. J. Beukema, T. Zwick, U. R. Pfeiffer, and H. A. Ainspan, “A direct-conversion receiver integrated circuit for WCDMA mobile systems”, IBM Journal of Research and Development, vol. 47, No. 2/3, 2003
[8] A. Springer, R. Weigel, “RF Microelectronics for W-CDMA Mobile Communication Systems”, Electron. Commun. Eng. J., vol. 14, pp. 92-100, Jun, 2002
[9] B. Gilbert, “The MICROMIXER: A highly linear variant of the Gilbert mixer using a bisymmetric Class-AB input stage”, IEEE J. Solid-State Circuits, vol.: 32, Issue: 9, pp. 1412-1423, Sept. 1997.
[10] J. Durec and E. Main, “A linear classAB single-ended to differential transconverter suitable for RF circuit.” IEEE MTT-S Dig., pp. 1071-1074, 1996
[11] C. C. Meng, S. S. Lu, M. H. Chiang and H. C. Chen, “DC to 8 GHz 11 dB gain Gilbert micromixer using GaInP/GaAs HBT technology.” Electronics Letters, Vol. 39 Issue: 8, April 2003.
[12] C. C. Meng, S. S. Lu and Cheng-Yu Wang, April 2000, “Wideband impedance matched GaInP/GaAs HBT Gilbert micromixer with 12dB gain” ASIC, Proceedings, IEEE Asia-Pacific Conference on, Vol.6-8, pp. 323-326, Aug 2002
[13] C. C. Meng, S. K. Xu, T. H. Wu, M. H. Chao and G. W. Huang, “A high isolation CMFB Downconversion Micromixer using 0.18-um deep n-well CMOS technology.” IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, Vol.8-10, pp. 619-622, June 2003.
[14] R. Point, M. Mendes and W. Foley, “A differential 2.4 GHz switched-gain CMOS LNA for 802.11b and Bluetooth”, 2002 IEEE Radio and Wireless Conference, RAWCON, pp.221–224, Aug. 2002
[15] K.L. Fong, “Dual-band high-linearity variable-gain low-noise amplifiers for wireless applications”, 1999 IEEE International Solid-State Circuits Conference, 1999. Digest of Technical Papers. ISSCC., pp.224-225, Feb. 1999
[16] M.K. Raja; T.T.C. Boon; K.N. Kumar and S.J. Wong, “A fully integrated variable gain 5.75-GHz LNA with on chip active balun for WLAN”, 2003 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, pp.439-442, June 2003
[17] Y.K. Chu, C.H. Liao and H.R. Chuang, “5.7 GHz 0.18um CMOS gain-controlled LNA and mixer for 802.11a WLAN applications” 2003 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, pp.221-224, June 2003
[18] E. Sacchi, I. Bietti, F. Gatta, F. Svelto and R. Castello, “A 2 dB NF, fully differential, variable gain, 900 MHz CMOS LNA”, 2000 VLSI Circuits, Digest of Technical Papers. 2000 Symposium, pp.94-97, June 2000
[19] M. Lin, Y. Li and H. Chen, “A 5-GHz CMOS front-end circuit with low power, low noise and variable gain for WLAN applications”, 2003 VLSI Technology, Systems, and Applications, 2003 International Symposium, pp.280-283, 2003
[20] T.H. Lee, The Design of CMOS Radio Frequency Integrated Circuits, Firstst ed. Cambridge, U.K.: Cambridge Univ. Press 1998.
[21] B. Razavi,” Design considerations for direct-conversion receivers,” Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on , Volume: 44 Issue: 6 , June 1997
[22] A.A. Abidi,” Direct-conversion radio transceivers for digital communications,” 1995 IEEE J. Solid-State Circuits, Volume: 30 Issue: 12 , Dec. 1995
[23] T. H. Lee and A. Hajimiri,” Oscillator Phase Noise: A Tutorial”, 2000 IEEE J. Solid-State Circuits, vol.: 35, Issue: 3, pp. 326-336, Mar. 2000.
[24] R. Aparicio and A. Hajimiri,” A Noise-Shifting Differential Colpitts VCO”, 2002 IEEE J. Solid-State Circuits, vol.: 37, Issue: 12, pp. 1728-1736, Dec. 2002.
[25] A. Hajimiri and T. H. Lee, The Design of Low Noise Oscillators. Norwell, MA: Kluwer, 1999.
[26] E. Hegazi, H. Sjoland and A.A. Adibi, “A Filtering Technique to Lower LC Oscillator Phase Noise”, 2001 IEEE J. Solid-State Circuits, vol. 36, Issue: 12, pp. 1921-1930, Dec. 2001.
[27] A.D. Berny, A.M. Niknejad and R.G. Meyer, “A wideband low-phase-noise CMOS VCO”, Custom Integrated Circuits Conference, 2003. Proceedings of the IEEE 2003, pp.555–558, 21-24 Sept. 2003.
[28] J.M. Mourant, J. Imbornone and T. Tewksbury, “A low phase noise monolithic VCO in SiGe BiCMOS”, 2000 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 2000. Digest of Papers, pp.65-68, June 2000
[29] M. Tiebout, “Low-power low-phase-noise differentially tuned quadrature VCO design in standard CMOS”, 2001 IEEE J. Solid-State Circuits, vol. 36, Issue 7, pp. 1018-1024, July 2001
[30] 張耿孟,應用於WCDMA之整數型頻率合成器,國立清華大學電子工程研究所碩士論文,民國九十三年。
[31] 劉偉正,應用於ISM與Ka頻段之射頻收發機前端電路研製,國立中央大學通訊工程研究所碩士論文,民國九十三年。
[32] 林正杰,應用於寬頻劃碼多工進接及雙頻無線區域網路之射頻收發機研製,國立中央大學電機工程研究所碩士論文,民國九十三年。
指導教授 邱煥凱(Hwann-Kaeo Chiou) 審核日期 2005-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明