博碩士論文 92521068 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:3.145.23.123
姓名 林柏辰(Po-Chen Lin)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 氮化鋁鎵/氮化鎵高電子移導率場效電晶體之製作與應用
(AlGaN/GaN high electron mobility transistors:fabrication and application)
相關論文
★ 增強型異質結構高速移導率電晶體大信號模型之建立及其在微波放大器之應用★ 空乏型暨增強型Metamorphic HEMT之製作與研究
★ 增強型與空乏型砷化鋁鎵/砷化銦鎵假晶格高電子遷移率電晶體: 元件特性、模型與電路應用★ 氧化鋁基板上微波功率放大器之研製
★ 氧化鋁基板上積體化微波降頻器電路之研製★ 順序特徵結構設計研究及其應用在特徵模子去耦合與最小特徵值靈敏度
★ 順序特徵結構設計研究及其應用在最大強健穩定度與最小迴授增益★ LDMOS功率電晶體元件設計、特性分析及其模型之建立
★ CMOS無線通訊接收端模組之設計與實現★ 積體化微波被動元件之研製與2.4GHz射頻電路設計
★ 異質結構高速移導率電晶體模擬、製作與大訊號模型之建立★ 氧化鋁基板微波電路積體化之2.4 GHz接收端模組研製
★ 氧化鋁基板上積體化被動元件及其微波電路設計與研製★ 二維至三維微波被動元件與射頻電路之設計與研製
★ CMOS射頻無線通訊發射端電路設計★ 次微米金氧半場效電晶體高頻大訊號模型及應用於微波積體電路之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文首先介紹HEMT的工作原理,以此為基礎設計我們的氮化鋁鎵/氮化鎵高電子移導率場效電晶體。在元件的歐姆接觸方面,我們參考歐姆接觸的原理,利用傳輸線模型以Ti/Al/Ni/Au (25/125/45/55 nm)的蒸鍍厚度、800℃-30秒鐘的熱退火條件,製作出阻抗為0.4 Ω-mm的歐姆接觸。元件製作完成之後,我們對氮化鋁鎵/氮化鎵高電子移導率場效電晶體作直流、小訊號、功率量測,元件特性汲最大飽和電流為900 mA/mm、最大轉導為196 mS/mm、增益截止頻率為37 GHz、功率增益截止頻率為45 GHz,其它功率上特性如功率增益為14.6 dB、最大輸出功率為25 dBm。在脈衝電流-電壓量測方面,我們結合低溫量測系統量測出元件在100K、200K、300K的電流-電壓特性,並分析元件的熱效應與表面缺陷。
關鍵字(中) ★ 氮化鋁鎵
★ 脈衝波
★ 氮化鎵
★ 場效電晶體
關鍵字(英) ★ AlGaN
★ GaN
★ HEMT
★ Pulse
★ FET
論文目次 第一章 導論 1
§1.1 研究動機 1
§1.2 論文架構 3
第二章 氮化鋁鎵/氮化鎵高電子移導率電晶體工作原理 5
§2.1 氮化鋁鎵/氮化鎵高電子移導率場效電晶體介紹 5
§2.2 歐姆接觸原理 13
§2.3 傳輸線模型原理 18
§2.4 蕭特基接觸原理 21
§2.5 結論 24
第三章 氮化鋁鎵/氮化鎵高電子移導率場效電晶體製程 25
§3.1 元件隔離製程測試 25
§3.2 歐姆接觸製程測試 30
§3.3 氮化鋁鎵/氮化鎵高電子移導率場效電晶體製程 34
§3.4 結論 45
第四章 氮化鋁鎵/氮化鎵高電子移導率場效電晶體電性量測結果 46
§4.1 藍寶石基板元件電性量測結果 46
§4.2 矽基板元件電性量測結果 50
§4.3 元件小信號參數萃取 54
§4.4 結論 61
第五章 Pulsed IV量測系統與分析 62
§5.1 Pulsed IV量測系統架構 62
§5.2 Pulsed IV量測結果分析 64
§5.3 結論 69
第六章 結論 71
參考文獻 73
參考文獻 [1] S. Nakamura and G. Fasol, “The Blue Laser Diode”, Springer, Heidelberg, 1997.
[2] S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-based multi-quantum-well-structure laser diodes”, J. Appl. Phys., Vol.35, pp.74, 1996.
[3] T. Mukai, H. Narimatsu, and S. Nakamura, “Amber InGaN based light emitting diodes operable at high ambient temperature”, J. Appl. Phys., Vol. 37, pp.479-481, 1998.
[4] S. Nakamura, T. Mukai ,and M. Senoh, “High power GaN P-N junction blue light emitting diodes”, J. Appl. Phys., Vol.30, pp.1998, 1991.
[5] S. Nakamura, T. Mukai ,and M. Senoh, “Candela classhigh brightness InGaN/AlGaN double heterostructure blue light emitting diodes”, Appl. Phys. Lett., Vol.64, pp.1687, 1994.
[6] M. A. Khan, J. N. Kuznia, A. R. Bhattarai, and D. T. Oslon, “Metal semiconductor field effect transistor based on single crystal GaN”, Appl. Phys. Lett., Vol.62, pp.1786, 1993.
[7] L. F. Eastman, V. Tilak, J. Smart, B. M. Green, and J. R. Shealy, “Undoped AlGaN/GaN HEMTs for microwave power amplifiers”, IEEE Trans. Electron Devices, Vol.48, No.3, pp.479, 2001.
[8] V. Kumar, W. Lu, F.A. Khan, R. Schwindt, A. Kuliev, G. Simin, J. Yang, M. Asif Khan, and I. Adesida, “High performance 0.25 mm gate-length AlGaN/GaN HEMTs on sapphire with transconductance of over 400 mS/mm”, Electronics Lett., Vol.38, pp.252, 2002.
[9] M. A. Khan, A. Bhattarai, J. N. Kuznia, and D. T. Olson, “High electron mobility transistor based on a GaN-AlxGa1-xN heterojunction”, Appl. Phys. Lett., Vol.63, pp.1214, 1993.
[10] S. J. Cai, R. Li, Y. L. Chen, L. Wong, W. G. Wu, S. G. Thomas ,and K. L. Wang, “High performance AlGaN/GaN HEMT with improved ohmic contact”, Electronics Lett., Vol.34, pp.2354, 1998.
[11] J. M. Barker, D. K. Ferry, S. M. Goodnick, D. D. Doleske, A. Allerman, and R. J. Shul, “Effects of surface treatment on the velocity-field characteristics of AlGaN/GaN heterostructures”, Semicond. Sci. Tech. 19, pp.478-480, 2004.
[12] A. E. Wickenden, D. D. Koleske, R. L. Henry, R. J. Gorman, M. E. Twigg, M. Fatemi, J. A. Freitas, Jr., and W. J. Moore, “The influence of OMVPE growth pressure on the morphology, compensation, and doping of GaN and related alloys”, J. Electronic Materials, Vol. 29, No.1, 2000.
[13] M. A. Khan, and M. S. Shur, “GaN-Based Devices for Electronic Applications”, Vol.33, 2004.
[14] O. Ambacher, J. Smart, J. R. Shealy, and M. Murphy , “Two-dimentional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures”, J. Appl. Phys., Vol.85, No.6, pp.3222, 1999.
[15] R.Dimitrov et al.,“Two-dimentional electron gases in Ga-face and N-face AlGaN/GaN heterostructures grown by plasma-induced molecular beam exitaxy and Metalorganic chemical vapor deposition on sapphire”, J. Appl. Phys., Vol.87, No.7, pp.3375, 2000.
[16] O.Ambacher, B. Foutz, J. Smart, and M. Stutzmann, “Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures”, J. Appl. Phys., Vol.87, No.1, pp.334, 2000.
[17] I. P. Smorchkova, C. R. Elsass, J. P. Ibbetson, and U. K. Mishra, “Polarization-induced charge and electron mobility in AlGaN/GaN heterostructures grown by plasma-assisted molecular-beam expitaxy”, J. Appl. Phys., Vol.86, No.8, pp.4520, 1999.
[18] M.S. Shur and M.A. Kahn, “Wide Band Gap Semiconductors. Good Results and Great Expections”, in the Proceedings of 23d International Symposium on GaAs and Related Compounds, St. Petersburg, Russia, Sep. 22-28, 1996, Institute Phys. Conferrence Series, No.155, Chapter 2, pp. 25-32, M.S. Shur and R. Suris, Editors, IOP Publishing, London 1997.
[19] F. A. Ponce, “Group III Nitride Semiconductor Compounds Physics and Applications”, pp.123-133, 1998.
[20] H. Morkoc, “GaN-based modulation doped FETs and UV detectors”, Solid State Electron, Vol.46, pp.157-202, 2002.
[21] T. C. Shen, G. B. Gao, and H. Morkoc, “Recent Developments in Ohmic Contacts to III-V Compound Semiconductors”, J. Vac. Sci. Tech., B10, pp.2113, 1992.
[22] D. K. Schroder, “Semiconductor material and device characterization”, Wiley Interscience, p.169-208, pp.133, 1998.
[23] R. E. Williams, “Galliun Arsenide processing Techniques”, chapter 11, pp.225-253.
[24] Z. Fan, S. N. Mohammad, W. Kim, O. Aktas, A. E. Botchkarev, and H. Morkoc, “Microstructure of Ti/Al and Ti/Al/Ni/Au ohmic contacts for n-GaN”, Appl. Phys. Lett., Vol.68, pp.1672, 1996.
[25] 李嗣涔, 管傑雄, 孫台平, 半導體元件物理, 三民書局, pp.61, 1995
[26] P. E. Riley, S. S. Peng, L. Fang, “Plasma etching of Aluminum for ULSI circuits”, Solid State Tech., pp.47, 1993.
[27] S. K. Ghandhi, “VLSI Fabrication Principles”, pp.635, 1994.
[28] M. E. Lin, Z. F. Fan, Z. Ma, L. H. Allen, and H. Morkoc, “Reactive ion etching of GaN using BCl3”, Appl. Phys. Lett., Vol.64, No.7, 1994.
[29] G. F. McLane and L. Casas, “High etch of GaN with magnetron reactive ion etching in BCl3 plasmas”, Appl. Phys. Lett., Vol.66, No.44, pp.332, 1995.
[30] D. Basak, T. Nakanishi, S. Sakai, “Reactive ion etching of GaN using BCl3 , BCl3/Arand BCl3 / N2 gas plasmas”, Solid State Electronics, Vol.44, pp.725-728, 2000.
指導教授 詹益仁(Yi-Jen Chan) 審核日期 2005-6-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明