博碩士論文 93521013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:92 、訪客IP:3.16.83.157
姓名 曾卿銘(Ching-Ming Tseng)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 3.1~10.6 GHz超寬頻接收機前端電路之研究
(Study on 3.1~ 10.6 GHz Ultra-Wideband Receiver Front End)
相關論文
★ 應用於筆記型電腦數位電視單極天線之研製★ 應用於數位機上盒與纜線數據機之電纜多媒體傳輸標準多工濾波器
★ 印刷共面波導饋入式多頻帶與超寬頻天線設計★ 微波存取全球互通頻段前向匯入式功率放大器與高效率Class F類功率放大器暨壓控振盪器電路之研製
★ 應用於矽基功率放大器與混頻器之傳輸線型變壓器研究★ 應用於V-頻段射頻收發機前端電路之低功耗源極注入式混頻器之研製
★ 應用積體電路上方後製程與整合被動元件於互補式金氧半導體製程之系統封裝研究★ 應用fT-倍頻電路架構於毫米波壓控振盪器與注入鎖定除頻器之研製
★ 應用傳輸線型變壓器於X/K–Ka/V頻段全積體整合之寬頻互補式金氧半導體功率放大器研製★ 應用於K / V 頻段低功耗混頻器之研製
★ 應用於K/V頻段之低功耗CMOS低雜訊放大器之研究★ 應用於5-GHz CMOS射頻前端電路之低電壓自偏壓式混頻器與高線性化功率放大器之研製
★ 應用於 K 頻段射頻接收機之寬頻低功耗 CMOS 低雜訊放大器之研製★ 應用磁耦合變壓器於K頻段之低功耗互補式金氧半導體壓控振盪器研製
★ 應用於K頻段之單向化全積體整合功率放大器與應用於V頻段之寬頻功率放大器研製★ 應用於C/X頻段全積體整合之互補式金氧半導體寬頻低功耗降頻器與寬頻功率混頻器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 由於無線通訊及傳輸的便利,無線系統的應用已經普遍且深入我們的生活領域。隨著越來越多的無線傳輸應用,現今對大量資料傳輸系統的需求已經變的更加迫切,因此,我們需要更高的資料傳輸速率系統規範。超寬頻系統具備3.1 GHz到10.6 GHz,共計7.5 GHz的頻寬系統應用規範。
本論文主要研究內容為3.1-10.6 GHz超寬頻接收機前端電路,電路皆以台積電0.18微米互補式金氧半導體製程研製,其中包含超寬頻低雜訊放大器(ultra-wideband low noise amplifier)、超寬頻混頻器(ultra-wideband mixer)。
超寬頻低雜訊放大器使用電阻性電感電容合成電路作寬頻阻抗匹配,並同時達到增益與雜訊匹配,經由實作驗證後,與理論推導相同。另一個變壓器回授式寬頻低雜訊放大器藉由增加變壓器圈數可達到低功率消耗與高增益特性,且由實作驗證後,與理論推導相同。超寬頻混頻器使用電阻性電感電容合成電路作寬頻阻抗匹配,經由實作驗證後,與理論推導相同。
超寬頻接收機前端電路量測結果,超寬頻混頻器RF與IF返回損耗在2.5 - 10.6 GHz均小於10 dB以下。IF降頻頻率為10 MHz,RF頻率較LO頻率高,LO功率為-3 dBm時最有效率,混頻器最大轉頻增益為10.4 dB,3-dB頻寬是0.3 ~ 10.9 GHz。IF頻率3-dB操作頻寬為10 MHz - 250 MHz。混頻器增益壓縮點(1-dB compression point)及三階截斷點(IIP3),頻率由2 GHz - 10 GHz,增益壓縮點在-14 dBm以上,IIP3在-2.5 dBm以上。RF-LO、LO-IF及RF-IF隔離度,頻率由2 GHz - 12 GHz各個埠的隔離度均在-27 dB以上。
源極退化式超寬頻低雜訊放大器的輸入返回損耗在0.1 - 20 GHz均小於10 dB,最大增益約為10.8 dB,小於± 0.5 dB的平坦度頻寬為3.1 - 10.6 GHz,3-dB頻寬由1.6 - 13.2 GHz,雜訊指數3.4 - 5.7 dB,IIP3及P1dB最小值分別在-4 dBm及-14 dBm以上。變壓器回授式寬頻低雜訊放大器的輸入返回損耗在3.1 - 9.1 GHz均小於-10 dB,但3.3 - 6.6 GHz的返迴損耗小於-10 dB,直流消耗功率6.4 mW。最大增益約為11.19 dB, 3-dB頻寬由3 - 9.1 GHz,雜訊指數2.99 - 4.77 dB,輸入頻率7 GHz的IIP3及P1dB分別在-5 dBm及-6 dBm以上。
摘要(英) Since the convenience of wireless communication, the wireless applications are popular and go deep into our life. As more and more applications trend to wireless, the data rate of the systems nowadays become not allowable. Thus, new high-data-rate standards are required. One of the conspicuous, high-data-rate standards is the Ultra-Wideband (UWB) with a total bandwidth of 7.5 GHz from 3.1 GHz to 10.6 GHz.
Ultra-wideband low noise amplifier use lossy LC ladder to wideband impedance match, and the broadband gain and noise match are simultaneously achieved. The implantation of the proposed UWB LNA shows the same performance with the simulation results. The second circuit, a transformer feedback wideband low noise amplifier use transformer to achieve low power consumption and high gain performance. The implantation of the proposed UWB transformer feedback low noise amplifier shows the same performance with the simulation results.
The main research in this thesis is 3.1 ~ 10.6 GHz Ultra-wideband receiver front end. The front end includes ultra-wideband low noise amplifier and ultra-wideband mixer. The circuits in this thesis are implemented in tsmc 0.18 μm CMOS process.
The measurement results of ultra-wideband reveiver fornt ends are as follows: for UWB mixer, the obtained return loss of RF and IF ports are both better than 10 dB. Low side local oscillator (LO) frequency is selected and inter-mediate frequency (IF) is chosen as 10 MHz. the optimized LO driver is -3 dBm. The conversion gain of mixer is 10.4 dB, with its RF 3-dB bandwidth from 0.3 GHz to 10.9 GHz. The IF 3-dB bandwidth is measured from 10 MHz to 250 MHz. The 1-dB compression point and IIP3 are better than -14 dBm and -2.5 dBm across the RF frequency from 2 to 10 GHz. The port to port isolations of RF-LO, LO-IF and RF-IF are better than -27 dB from 2 GHz to 12 GHz.
For the lossy LC ladder source inductor degeneration low noise amplifier, the obtained return loss is better than 10 dB from 0.1 to 20 GHz, a 10.8 dB maximum with the ± 0.5 dB flatness is achieved across 3.1 to 10.6 GHz. The 3-dB bandwidth is from 1.6 to 13.2 GHz. The noise figure is achieved between 3.4 to 5.7 dB across UWB frequency range. The measurement results of IIP3 and P1dB are better than -4 dBm and -14 dBm, respectively. For the transformer feedback wideband low noise amplifier, the measured input return loss is better than 10 dB from 3.1 to 9.1 GHz under the excellent dc power consumption of 6.4 mW. A 11.19 dB maximum gain is achieved with 3-dB bandwidth from 3 to 9.1 GHz. The noise figure is between 2.99 to 4.77 dB across the whole band. The measurement results of IIP3 and P1dB are better than -5 dBm and -6 dBm, respectively.
關鍵字(中) ★ 超寬頻系統
★ 寬頻低雜訊放大器
★ 寬頻混頻器
★ 變壓器
關鍵字(英) ★ UWB
★ transformer
★ Wideband mixer
★ Wideband low noise amplifier
論文目次 目錄
摘要 Ⅰ
目錄 VII
圖列表 IX
表格列表 XII
第一章 緒論
1-1 超寬頻系統介紹 1
1-2 動機 3
1-3 章節論述 6
第二章 寬頻混頻器設計
2-1 簡介 7
2-2 寬頻混頻器基本原理分析 8
2-3 混頻器雜訊分析 10
2-4 寬頻阻抗匹配 14
2-5 寬頻混頻器的量測結果 16
第三章 寬頻低雜訊放大器設計
3-1 簡介 21
3-2 寬頻低雜訊放大器種類 22
3-2-1 分散式寬頻放大器 22
3-2-2 電阻式回授寬頻放大器 23
3-2-3 源極電感退化式放大器 23
3-3 寬頻低雜訊放大器基本原理 24
3-3-1 低雜訊放大器雜訊分析 24
3-3-2 寬頻低雜訊放大器雜訊模型 27
3-4 增強寬頻設計 28
3-5 電阻性LC合成寬頻低雜訊放大器 31
3-5-1寬頻輸入匹配 33
3-5-2雜訊最佳化 34
3-5-1電阻性LC合成式寬頻低雜訊放大器的模擬與量測結果 39
3-6 變壓器回授式寬頻低雜訊放大器 44
3-6-1 基本變壓器理論分析 45
3-6-2 變壓器回授式理論分析 46
3-6-3 變壓器設計 52
3-6-4 變壓器回授式寬頻低雜訊放大器的模擬與量測結果 54
第四章 結論與未來方向 59
參考文獻 63
參考文獻 參考文獻
[1]. http://www.uwbforum.org
[2]. G. Roberto Aiello and Gerald D. Rogerson, “Ultra-Wideband Wireless Systems”, IEEE Microwave Magazine, vol.4, Issue 2, pp.36-47, June 2003
[3]. R. Harjani, J. Harvey, and R. Sainati, “Analog/RF physical layer issues for UWB systems”, VLSI Design, Proceedings. 17th International Conference, pp.941-948, 2004
[4]. D. Porcino, W. Hirt, “Ultra-Wideband Radio Technology: Potential and Challenges Ahead”, IEEE Communications Magazine, vol.41, Issue 7, pp.66-74, July 2003
[5]. M. P. Wylie-Green, P. A. Ranta, J. Salokannel, “Multi-band OFDM UWB solution for IEEE 802.15.3a WPANs”, Advances in Wired and Wireless Communication, 2005 IEEE/Sarnoff Symposium, pp.102-105, April 18-19, 2005
[6]. G. Racherla, J. L. Ellis, D. S. Furuno, S. C. Lin, “Ultra-Wideband systems for data communications”, Personal Wireless Communications, 2002 IEEE International Conference, pp.129-133, Dec. 2002
[7]. A. Batra et al., “Multi-band OFDM Physical Layer Proposal”, merged proposal for IEEE 802.15.3a, https://ieee802.org/15/pub/Download.html, July 2003
[8]. A. Batra, ; J. Balakrishnan, ; G.R. Aiello, ; J.R. Foerster, ; A. Dabak, “Design of a multiband OFDM system for realistic UWB channel environments”, IEEE Transactions on Microwave Theory and Techniques, vol. 52, Issue 9, Part 1, Sept. 2004
[9]. 德州儀器DSPS研發中心
[10]. B. Shi; Chia, M.Y.W., “A 3.1-10.6 GHz RF front-end for multiband UWB wireless receivers”, IEEE Radio Frequency integrated Circuits (RFIC) , 12-14 June 2005
[11]. A. Ismail, M. Olsson, H., “A wide-band RF front-end for multiband multistandard high-linearity low-IF wireless receivers”, IEEE Journal of Solid-State Circuits, Volume 37, Issue 9, Sep 2002
[12]. P. Heydari, D. Lin, A. Shameli, Yazdi, A., “Design of CMOS distributed circuits for multiband UWB wireless receivers”, IEEE Radio Frequency integrated Circuits (RFIC) , 12-14 June 2005
[13]. C. S. Lin; P. S. Wu; H. Y. Chang; H. Wang, “A 9–50-GHz Gilbert-Cell Down-Conversion mixer in 0.13-?m CMOS Technology,” IEEE Microwave and Wireless Components Letters, volume 16, Issue 5, May 2006 Page(s):293 - 295
[14]. A.Q. Safarian, A. Yazdi, P. Heydari, “Design and analysis of an ultrawide-band distributed CMOS mixer” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, volume 13, Issue 5, May 2005 Page(s):618 - 629
[15]. M. D. Tsai, H. Wang, “A 0.3-25-GHz Ultra-Wide-Band mixers Using Commercial 0.18μm CMOS Technology,” volume 14, Issue 11, Nov. 2004 Page(s):522 - 524
[16]. M.T. Terrovitis, R.G. Meyer, “Noise in current-commutating CMOS mixers,” IEEE Journal of Solid-State Circuits, volume 34, Issue 6, June 1999
[17]. H. Darabi, A.A. Abidi, “Noise in RF-CMOS mixers: a simple physical model”, IEEE Journal of Solid-State Circuits, volume 35, Issue 1, Jan. 2000
[18]. P. Heydari, “High-frequency noise in RF active CMOS mixers”, Design Automation Conference, 2004. Proceedings of the ASP-DAC 2004. Asia and South Pacific, 27-30 Jan. 2004
[19]. C. W. Kim, M. S. Kang, P. T. Anh, H. T. Kim, and S. G. Lee, “An ultra-wideband CMOS low noise amplifier for 3-5-GHz UWB system,” IEEE J. of Solid-State Circuits, vol. 40, no. 2, pp. 544–547, Feb. 2005.
[20]. C. P. Chang, and H. R. Chuang, “0.18-μm 3-6 GHz CMOS broadband low noise amplifier for UWB radio,” Electronics Lett., vol. 41, No. 12, pp. 696–698, 9th June 2005.
[21]. R. Gharpurey, “A broadband low-noise front-end amplifier for ultra wideband in 0.13-?m CMOS,” IEEE J. of Solid-State Circuits, vol. 40, no. 9, pp. 1983–1986, Sept. 2005
[22]. C. F. Liao, and S. I. Liu, “A broadband noise-canceling CMOS low noise amplifier for 3.1-10.6-GHz UWB receiver,” in Proc. IEEE Custom Integrated Circuits Conference (CICC), 18–21 Sept. 2005, pp. 161–164.
[23]. M. D. Tsai; K. Y. Lin; H. Wang, “A 5.4-mW low noise amplifier using 0.35- /spl mu/m SiGe BiCMOS technology for 3.1-10.6-GHz UWB wireless receivers“ Radio Frequency integrated Circuits (RFIC) Symposium, 2005. Digest of Papers. 2005 IEEE, 12-14 June 2005 Page(s):335 - 338
[24]. A. Bevilacqua, and A. M. Niknejad, “An ultra-wideband CMOS low noise amplifier for 3.1 to 10.6 GHz wireless receivers,” IEEE J. of Solid-State Circuits, vol. 39, no. 12, pp. 2259–2268, Dec. 2004.
[25]. H. Ahn et al, “A 0.5-8.5 GHz Fully Differential CMOS Distributed Amplifier”, IEEE Journal of Solid-State Circuits, vol.37, no. 8, Aug.2002, pp. 985-993, Aug. 2002.
[26]. K. Krishnamurthy, R. Vetury, S. Keller, Umesh Mishra, Mark J. W. Rodwell and Stephen I. Long, “Broadband GaAs MESFET and GaN HEMT Resistance Feedback Power Amplifiers”, IEEE Journal of Solid-State Circuits, vol.35, no. 9, Sept. 2000, pp. 1285-1291.
[27]. D. K. Shaeffer, and T. H. Lee, “A 1.5-V, 1.5-GHz CMOS low noise amplifier,” IEEE J. Solid-State Circuits, vol. 32, no. 5, pp. 745–759, May 1997.
[28]. K. J. Sun, Z. M. Tsai, K. Y. Lin, H. Wang, “A Noise Optimization Formulation for CMOS Low-Noise Amplifiers With On-Chip Low-Q inductors”, IEEE Transactions on Microwave Theory and Techniques, Volume 54, Issue 4, Part 1, April 2006
[29]. T. K. Nguyen, S. G. Lee, “Noise and gain optimization technique for RF-integrated CMOS low noise amplifier” Electron Devices and Solid-State Circuits, 2003 IEEE Conference on, 16-18 Dec. 2003
[30]. A. Ismail, A. A. Abidi, “A 3-10-GHz low-noise amplifier with wideband LC-ladder matching network,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2269–2277, Dec. 2004.
[31]. T. H. Lee, “The design of CMOS radio-frequency integrated circuits” Communications Engineer, Volume 2, Issue 4, Aug.-Sept. 2004
[32]. S.S. Mohan, M.D.M. Hershenson, S.P. Boyd, T.H. Lee, “Bandwidth extension in CMOS with optimized on-chip inductors” IEEE J. Solid-State Circuits, Volume 35, Issue 3, March 2000
[33]. Behzad Razavi University of California, Los Angeles “RF Microelectronics”
[34]. D. J. Cassan, J. R. Long, “A 1-V transformer-feedback low-noise amplifier for 5-GHz wireless LAN in 0.18-/spl mu/m CMOS”, IEEE J. Solid-State Circuits, Volume 38, Issue 3, March 2003
[35]. J.R. Long, “Monolithic transformers for silicon RF IC design” IEEE J. Solid-State Circuits, Volume 35, Issue 9, Sept. 2000
[36]. J.J. Zhou and D. J. Allstot, “Monolithic transformers and their application in a differential CMOS RF low-noise amplifier,” IEEE J. Solid-State Circuits, vol. 33, no.12, pp. 2020-2027, Dec. 1998.
[37]. M. Danesh and J. Long, “Differential driven symmetric microstrip inductors,” IEEE Trans. Microwave Theory and Techniques, vol. 50, no. 1, Jan. 2002.
[38]. N. Marchand, “Transmission Line conversion transformers,” Electron., vol.17, pp. 142, Dec. 1994.
[39]. Y. K. Koutsoyannopoulos, Member, IEEE and Yannis Papananos, Senior Member, IEEE “Systematic Analysis and Modeling of Integrated Inductors and Transformers in RF IC Design,” IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 47, NO. 8, AUGUST 2000
[40]. S. Krishnan, D. Mensa, J. Guthrie, S. Jaganathan, T. Mathew, R. Girish, Y. Wei and Mark J. W. Rodwell, “Broadband Lumped HBT amplifiers”, IEEE Electronics Letters vol. 36, no.5, pp.466-467, March 2000.
[41]. R. C. Liu, Student Member, IEEE, Chin-Shen Lin, Student Member, IEEE, Kuo-Liang Deng, and Huei Wang, Senior Member, IEEE, “Design and Analysis of DC-to-13-GHz and 22-GHz CMOS Cascode Distributed Amplifiers”, IEEE Journal of Solid-State Circuits, vol. 39, no. 8, August 2004
指導教授 邱煥凱(Hwann-Kaeo Chiou) 審核日期 2006-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明