English  |  正體中文  |  简体中文  |  Items with full text/Total items : 73032/73032 (100%)
Visitors : 23388062      Online Users : 483
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/1195

    Title: 緩衝材料在熱/水力耦合作用下溫度分布與水力傳導性研究;Thermo/hydro coupling effects on temperature distribution and hydraulic conductivity of buffer material
    Authors: 王雅薇;Ya-wei Wang
    Contributors: 土木工程研究所
    Keywords: 熱-水力耦合;水力傳導性;緩衝材料;hydraulic conductivity;buffer material;thermo/hydro coupling
    Date: 2007-07-05
    Issue Date: 2009-09-18 17:23:04 (UTC+8)
    Publisher: 國立中央大學圖書館
    Abstract: 放射性廢棄物最終處置為確保放射性廢棄物與人類環境的隔離,採用多重障壁的深地層處置是公認最可行的辦法。緩衝材料於近場環境下長期受高放射性廢棄物衰變熱與地下水入侵的耦合作用,地下水尚未入侵前形同乾燥加熱狀態,當地下水入侵緩衝材料再飽和過程中,整個處置環境在熱-水力梯度耦合效應下,反應機制變得相當複雜。 本論文模擬處置場在近場環境下緩衝材料特性,探討因子包括黏土礦物組成成分與熱/水力耦合狀態下溫度分布與水力傳導度,並借助穿透式電子顯微鏡(TEM)觀察回脹後之微觀特徵。以國產日興土與美國懷俄明州膨潤土為研究材料,設計乾密度1.5~1.7 Mg/m3。於實驗室裡用熱探針法量測膨潤土溫度變化;以及日興土在25℃~80℃不同溫度之水力傳導係數,藉以探討緩衝材料在熱-水力效應作用下之行為。 研究結果發現:(1)日興土水力傳導性會隨著溫度上升而增加,當膨潤土乾密度增加,水力傳導係數降低。(2)X-Ray繞射分析結果顯示,日興土黏土礦物中以伊萊石的相對含量佔56%為多;其次是高嶺石相對含量約為30%;膨潤石的相對含量約14%。(3)TEM觀察顯示膠體在黏土系統內會依據不同型態排列,這些微觀組構的多變性,將可能影響著黏土組構。(4)膨潤土溫度分布靠近熱源處有明顯的溫度梯度,離熱源越遠溫度梯度越小,而與有限元素分析模擬的結果溫度分布相當接近。 A repository for high-level radioactive wastes would be constructed in the bedrock at the depth of several hundred meters below ground surface. The interaction of the thermal and hydration fronts will produce transient states in the barrier in which thermal flow, water movement will be coupled. A compacted bentonite block is submitted to simultaneous heating and hydration, and has been designed with the aim of simulating the heat/water flow interaction in the barrier. The transmission electronic microscope (TEM) was used in observing the microstructure of the bentonite in a swelled situation. Both Zhisin clay and Wyoming Black Hills (BH) bentonite were adopted as potential buffering materials and tested for suitability in this application. A thermal probe is installed in bentonite specimens to measure the temperature distribution and hydraulic conductivity of water saturated Ca-bentonite with dry densities of 1.5, 1.6, and 1.7 Mg/m3 , within the temperature range of 20 to 80℃. The results indicate: (1) The hydraulic conductivity of Zhisin clay increases with the rise of temperature. On the other hand, a decrease in hydraulic conductivity is observed as the dry density goes up to 1.7 Mg/m3; (2) X-Ray diffraction was conducted to identify clay minerals in Zhisin clay. The results showed that illite, as the major component, takes up 56 percent of the entire mineral proportion. The secondary clay mineral would be kaolinite and takes up about 30 percent; while smectite was found to be less then 14 percent; (3) TEM observation shows that the gel of clay system varies, and this variation in microstructure might affect the transport property of clay component; (4) The temperature gradient near the heater is found to be high, with a decrease in temperature gradient as the distance from the heater increases.
    Appears in Collections:[土木工程研究所] 博碩士論文

    Files in This Item:

    File SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明