中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/1287
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 40877884      Online Users : 1028
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/1287


    Title: 結合灰色理論與經驗模態分解法於固定路線車輛旅行時間之預測;Combine Grey Theory and Empirical Mode Decomposition apply to regular route vehicle travel time prediction
    Authors: 吳哲榮;Che-Jung Wu
    Contributors: 土木工程研究所
    Keywords: 旅行時間;希爾伯特黃-轉換;經驗模態分解;灰預測;Travel time;Hilbert Huang Transform;Empirical Mode Decomposition;Grey Forecasting
    Date: 2008-12-03
    Issue Date: 2009-09-18 17:25:56 (UTC+8)
    Publisher: 國立中央大學圖書館
    Abstract: 提供用路人有效之旅行時間,將有助於用路人在出發時間、路徑選擇上做出正確判斷。而校車為一固定路次、單一班次、無前車資訊之通勤車輛,且對於校車使用者而言,如果不能有效掌握校車行車資訊,將耗費更多的旅行時間與旅行成本才能到達目的地。本研究透過全球衛星定位技術,獲得校車即時行車資料,並利用資料庫系統構建校車行車資料庫,並以車輛行車速度作為輸入變數,進行希爾伯特-黃轉換中的經驗模態分解,再利用灰預測GM(1,1)模式針對各分量進行預測,求得校車未來之行車速度,以此估算校車到達下一停靠站旅行時間,結合歷史資料推估模式,應用歷史資料推估後續各站之旅行時間,計算整體路徑旅行時間,並建構校車位置與預估到站時間語音查詢系統。經由測試結果比較,發現本研究所構建之旅行時間預測模式,在平均絕對誤差時間與平均絕對誤差百分比部分均優於只使用歷史資料推估法,顯示本研究模式有助於提升旅行時間預測的準確度,而根據本研究之問卷結果顯示,提供語音查詢服務能夠降低乘客之安全預留時間,有助於乘客縮短旅行時間。 To provide Travel time information for commuters, it will assist the commuters decision the departure time and routing. The school bus is the commuted transportation which runs with regular route and single runs of scheduled bus. If The commuters do not know well the driving information of school, it will result more travel time and cost. The research use the Global Positioning system receive school bus travel data, and input the school bus speed data to proceed Empirical Mode Decomposition, then employ the Grey Forecasting GM(1,1) Model to prediction IMF and calculate the next station arrival time, finally combine with Historical Profile Approach Model prediction the path travel time. Compared with the experiment results, the researcher set up both the prediction models of travel time, the testing result to appear in the Mean Absolute Error Time and Mean Absolute Percentage Error, are better than Historical Profile Approach. It indicates that this research model can improve the accuracy of travel time. Also, according to the result of questionnaire survey, it shows the broadcasting enquiring system can help customers to save their travel time.
    Appears in Collections:[Graduate Institute of Civil Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File SizeFormat


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明