GPS載波相位觀測量之精度較電碼觀測量高,但利用載波相位進行定位時,會有週波脫落以及相位模稜兩大問題。週波脫落需加以偵測並改正,否則將對模稜求定及定位成果之精確度造成顯著的影響;此外,利用載波相位觀測量進行衛星測量求解位置時,如何快速得到正確的整數相位模稜值,是求解精度與效率的關鍵。 本研究利用貝氏統計為基礎之方法開發演算程式,主要工作分為: (1) 於資料前處理之過程中,精確地改正週波脫落現象;(2)基於相位模稜應為整數未知數的概念,以貝氏方法進行模稜求定工作,並進行近即時定位;(3)利用蒙地卡羅數值法決策定位參數的信賴區域。實驗成果顯示,相位資料若發生週波脫落之狀況,本研究之演算程式可即時改正之;此外,無論靜態或緩速動態實驗,貝氏方法皆達到高精度之定位成果,且可即時以視覺化的方式呈現定位參數之信賴區域。 GPS carrier phase observation is more precise than code observation, but it causes the problems of phase ambiguity and cycle-slips. Detecting and correcting cycle-slips is a classical issue and is part of the more general problem of fixing integer variables in GPS phase observations. Furthermore, the key point to reach the target of precision and efficiency while using carrier phase for location is how to obtain quickly accurate integers of ambiguity. The main aims of this research are: (1) correcting cycle-slips at the data preprocessing stage by the Bayesian principle, (2) exploiting a Bayesian near-real-time data processing technique for ambiguity resolution based on the concept that phase ambiguities should be integer unknown parameters, (3) determining the confidence regions of the positioning parameters by using a Monte Carlo method. The experimental results in this paper indicate that the cycle-slips in carrier-phase data can be successfully identified. Furthermore, the accuracy of positioning results can be improved by using Bayesian approach and the confidence regions of positioning solutions can be visualized in near-real-time by using a Monte Carlo method.